• Title/Summary/Keyword: Minimum Error

Search Result 1,386, Processing Time 0.029 seconds

Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy

  • Lee, Jin-Hyeon;Lee, Jae-Ha;Yang, Seong-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1482-1489
    • /
    • 2001
  • Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing proce sses using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of the possible input variables is determined because the error model parameters are only calculated mathematically-based on the number of temperature variables.

  • PDF

A study on the realization of color printed material check using Error Back-Propagation rule (오류 역전파법으로구현한 컬러 인쇄물 검사에 관한 연구)

  • 한희석;이규영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.560-567
    • /
    • 1998
  • This paper concerned about a imputed color printed material image in camera to decrease noise and distortion by processing median filtering with input image to identical condition. Also this paper proposed the way of compares a normal printed material with an abnormal printed material color tone with trained a learning of the error back-propagation to block classification by extracting five place from identical block(3${\times}$3) of color printed material R, G, B value. As a representative algorithm of multi-layer perceptron the error Back-propagation technique used to solve complex problems. However, the Error Back-propagation is algorithm which basically used a gradient descent method which can be converged to local minimum and the Back Propagation train include problems, and that may converge in a local minimum rather than get a global minimum. The network structure appropriate for a given problem. In this paper, a good result is obtained by improve initial condition and adjust th number of hidden layer to solve the problem of real time process, learning and train.

  • PDF

Voice-Pishing Detection Algorithm Based on Minimum Classification Error Technique (최소 분류 오차 기법을 이용한 보이스 피싱 검출 알고리즘)

  • Lee, Kye-Hwan;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.138-142
    • /
    • 2009
  • We propose an effective voice-phishing detection algorithm based on discriminative weight training. The detection of voice phishing is performed based on a Gaussian mixture model (GMM) incorporaiting minimum classification error (MCE) technique. Actually, the MCE technique is based on log-likelihood from the decoding parameter of the SMV(Selectable Mode Vocoder) directly extracted from the decoding process in the mobile phone. According to the experimental result, the proposed approach is found to be effective for the voice phishing detection.

Emotion Recognition Algorithm Based on Minimum Classification Error incorporating Multi-modal System (최소 분류 오차 기법과 멀티 모달 시스템을 이용한 감정 인식 알고리즘)

  • Lee, Kye-Hwan;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.76-81
    • /
    • 2009
  • We propose an effective emotion recognition algorithm based on the minimum classification error (MCE) incorporating multi-modal system The emotion recognition is performed based on a Gaussian mixture model (GMM) based on MCE method employing on log-likelihood. In particular, the reposed technique is based on the fusion of feature vectors based on voice signal and galvanic skin response (GSR) from the body sensor. The experimental results indicate that performance of the proposal approach based on MCE incorporating the multi-modal system outperforms the conventional approach.

A New Steganographic Method with Minimum Distortion (최소 왜곡을 위한 새로운 스테가노그래피 방법)

  • Zhang, Rongyue;Md, Amiruzzaman;Kim, Hyoung-Joong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.201-204
    • /
    • 2008
  • In this paper a new steganographic method is presented with minimum distortion. This paper focused on DCT rounding error and optimized that in a very easy way, resulting stego image has less distortion than other existing methods. The proposed method compared with F5 steganography algorithm, and the proposed method achieved better performance. This paper considered the DCT rounding error for lower distortion with possibly higher embedding capacity.

  • PDF

Vocal separation method using weighted β-order minimum mean square error estimation based on kernel back-fitting (커널 백피팅 알고리즘 기반의 가중 β-지수승 최소평균제곱오차 추정방식을 적용한 보컬음 분리 기법)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • In this paper, we propose a vocal separation method using weighted ${\beta}$-order minimum mean wquare error estimation (WbE) based on kernel back-fitting algorithm. In spoken speech enhancement, it is well-known that the WbE outperforms the existing Bayesian estimators such as the minimum mean square error (MMSE) of the short-time spectral amplitude (STSA) and the MMSE of the logarithm of the STSA (LSA), in terms of both objective and subjective measures. In the proposed method, WbE is applied to a basic iterative kernel back-fitting algorithm for improving the vocal separation performance from monaural music signal. The experimental results show that the proposed method achieves better separation performance than other existing methods.

ONNEGATIVE MINIMUM BIASED ESTIMATION IN VARIANCE COMPONENT MODELS

  • Lee, Jong-Hoo
    • East Asian mathematical journal
    • /
    • v.5 no.1
    • /
    • pp.95-110
    • /
    • 1989
  • In a general variance component model, nonnegative quadratic estimators of the components of variance are considered which are invariant with respect to mean value translaion and have minimum bias (analogously to estimation theory of mean value parameters). Here the minimum is taken over an appropriate cone of positive semidefinite matrices, after having made a reduction by invariance. Among these estimators, which always exist the one of minimum norm is characterized. This characterization is achieved by systems of necessary and sufficient condition, and by a cone restricted pseudoinverse. In models where the decomposing covariance matrices span a commutative quadratic subspace, a representation of the considered estimator is derived that requires merely to solve an ordinary convex quadratic optimization problem. As an example, we present the two way nested classification random model. An unbiased estimator is derived for the mean squared error of any unbiased or biased estimator that is expressible as a linear combination of independent sums of squares. Further, it is shown that, for the classical balanced variance component models, this estimator is the best invariant unbiased estimator, for the variance of the ANOVA estimator and for the mean squared error of the nonnegative minimum biased estimator. As an example, the balanced two way nested classification model with ramdom effects if considered.

  • PDF

Image Interpolation Using Iterative Error Elimination (반복적 오차 제거를 이용한 영상 보간법)

  • Kim, Won-Hee;Piao, Fengji;Kim, Jong-Nam;Moon, Kwang-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.1000-1009
    • /
    • 2011
  • Image interpolation is a technique which estimates the non-allocated pixel values on image scale-transform. It requires minimum computational complexity and minimum image quality degradation on the interpolated resultant images. In this paper we propose an image interpolation method using iterative error estimation. The proposed method consists of the following five steps: loss-information computational step, loss-information estimation step, loss-information application step, error computation step, and error application step. The experimental results obtained show that the average PSNR is increased by 3.3dB, subjective image quality is enhanced and the minimum computation complexity is decreased by 83%. The proposed image interpolation algorithm may be helpful in various applications such as image reconstruction and enlargement.

Creep-Life Prediction and Its Error Analysis by the Time Temperature Parameters and the Minimum Commitment Method (시간-온도 파라미터법과 최소구속법에 의한 크리프 수명예측과 오차 분석)

  • Yin, Song-Nan;Ryu, Woo-Seog;Yi, Won;Kim, Woo-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.160-165
    • /
    • 2007
  • To predict long-term creep life from short-term creep life data, various parametric methods such as Larson-Mille. (L-M), Orr-Sherby-Dorn (O-S-D), Manson-Haferd (M-H) parameters, and a Minimum Commitment Method (MCM) were suggested. A number of the creep data were collected through literature surveys and experimental data produced in KAERI. The polynomial equations for type 316LN SS were obtained by the time-temperature parameters (TTP) and the MCM. Standard error (SE) and standard error of mean (SEM) values were obtained and compared with the each method for various temperatures. The TTP methods showed good creep-life prediction, but the MCM was much superior to the TTP ones at $700^{\circ}C$ and $750^{\circ}C$. It was found that the MCM were lower in the SE values when compared to the TTP methods.

Performance of Equalizer Schemes in Power Line Communication Systems for Automatic Metering Reading (자동 원격검침을 위한 전력선 통신 시스템에서의 등화 기법 연구)

  • Kim, Yo-cheol;Bae, Jung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • In this paper, we propose and analyze the equalizer schemes, zero-forcing (ZF) and minimum mean square error (MMSE) in power line communication (PLC) system for automatic meter reading (AMR). For efficient implementation of AMR system with PLC, effects of impulsive noise and multipath channel should be mitigated. To overcome these effects, the above equalizer schemes are employed. System performance is evaluated in term of bit error rate. From simulation results, it is confirmed that the equalizer can significantly improve bit error rate (BER) performance in PLC system, and MMSE equalizer provides better performance than ZF scheme. The results of this paper can be applied to AMR system as well as various smart grid services using PLC.