• Title/Summary/Keyword: Minimum Error

Search Result 1,386, Processing Time 0.032 seconds

Energy-Efficient Opportunistic Interference Alignment With MMSE Receiver

  • Shin, Won-Yong;Yoon, Jangho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.83-87
    • /
    • 2014
  • This paper introduces a refined opportunistic interference alignment (OIA) technique that uses minimum mean square error (MMSE) detection at the receivers in multiple-input multiple-output multi-cell uplink networks. In the OIA scheme under consideration, each user performs the optimal transmit beamforming and power control to minimize the level of interference generated to the other-cell base stations, as in the conventional energy-efficient OIA. The result showed that owing to the enhanced receiver structure, the OIA scheme shows much higher sum-rates than those of the conventional OIA with zero-forcing detection for all signal-to-noise ratio regions.

Improved SE SD Algorithm based on MMSE for MIMO Detection (MIMO 검파를 위한 MMSE 기반의 향상된 SE SD 알고리듬)

  • Cho, Hye-Min;Park, Soon-Chul;Han, Dong-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.231-237
    • /
    • 2010
  • Multi-input multi-output (MIMO) systems are used to improve the transmission rate in proportion to the number of antennas. However, their computational complexity is very high for the detection in the receiver. The sphere decoding (SD) is a detection algorithm with reduced complexity. In this paper, an improved Schnorr-Euchner SD (SE SD) is proposed based on the minimum mean square error (MMSE) and the Euclidean distance criteria without additional complexity.

Estimation of Proportional Control Signal from EMG (EMG 신호에서의 비례제어신호 추정에 관한 연구)

  • Choi, Kwang-Hyeon;Byun, Youn-Shik;Park, Sang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.133-142
    • /
    • 1984
  • The EMG signal can be considered as a signal source that expresses the intention of man because it is a electrical signal generated when the man contracts muscles. For proportional control of prostheses, the control signal proportional to the mousle contraction level must be estimated. Typically a foul-wave rectifier and low-pass filter are used to estimate the proportional control signal from the EMG signal. In this paper, it is proposed to use a logarithmic transformation and a linear minimum mean square error estimator. A logarithmic transformation maps the myoelectric signal into an additive control signal-plus-noise domain and the Kalman filter is used to estimate the control signal as a linear minimum mean square error estimator. The performance of this estimator is verified by the computer simulation and the estimator is applied to the EMG obtained from the biceps brachii muscle of normal subjects.

  • PDF

A Suboptimal Estimator Design for Discrete Nonlinear Systems (이산 비선형시스템에서의 준최적추정자)

  • 이연석;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.929-936
    • /
    • 1991
  • An estimator for a discrete nonlinear system is derived in the sense of minimum mean square error. An optimal estimator for nonlinear system is very difficult to find and it will be infinite dimensional even if it is found. It has been known that the statistical linearization technique makes it possible to obtain a finite dimensional estimator. In this paper, the procedure of its derivation using the statistical linearization technique that gives an exact mean and variance information is introduced in the sense of minimum mean square error. The derived estimator cannot be clainmed to be globally optimal estimator because it uses the Gaussian assumption to the non-Gaussian distributed nonlinear output. However, the proposed filter exhibits a better performance compared to extended Kalman filter. Simulation results of a simple example present the improvement of the proposed filter in convergent property over the extended Kalman filter.

  • PDF

Performance Analysis by Secondary link Frame structure in UAV System (무인기 운용환경을 고려한 보조링크 프레임 구조설계에 따른 성능분석)

  • Yoon, Chang-Bae;Kim, Hoi-Jun;Hong, Su-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1115-1120
    • /
    • 2017
  • In this paper, we apply the LMMSE(: Linear Minimum Mean Square Error) algorithm to overcome the Doppler effect according to the UAV(: Unmanned Aerial Vehicle) velocity in multipath fading channel environment. Simulation results show that the performance difference depends on the pilot arrangement and pattern, and we confirmed that the frame structure proposed in this paper can provide a stable secondary link for high speed UAV system.

Achievable Ergodic Capacity of a MIMO System with a MMSE Receiver

  • Kim, Jae Hong;Kim, Nam Shik;Song, Bong Seop
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.349-352
    • /
    • 2014
  • This paper considers the multiple-input multiple-output (MIMO) system with linear minimum mean square error (MMSE) detection under ideal fast fading. For $N_t$ transmit and $N_r({\geq}N_t)$ receive antennas, we derive the achievable ergodic capacity of MMSE detection exactly. When MMSE detection is considered in a receiver, we introduce a different approach that gives the approximation of a MIMO channel capacity at high signal-to-noise ratio (SNR). The difference between the channel capacity and the achievable capacity of MMSE detection converges to some constant that depends only on the number of antennas. We validate the analytical results by comparing them with Monte Carlo simulated results.

Position Error Compensation Method of Hall Sensors for Sunroof System using BLDC Motor (선루프용 BLDC 전동기 홀센서 위치 오차 보상 기법)

  • An, Jeong-Yeol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.53-57
    • /
    • 2017
  • This papers propose a Hall-effect sensors position error compensation method in a sunroof system using a BLDC motor with a low-cost MCU. If the BLDC motor is controlled with this wrong position, the torque ripple and operating current can be increased and the average torque also decreases. Generally, sunroof system has characteristics that operate at constant load for several seconds. It is possible to find the minimum operating current value while changing the position of the Hall-effect sensor during the sunroof operation by using these characteristics. Therefore, propose a method to change the Hall-effect sensor position and find the minimum current value. The validity of the proposed algorithm is verified through experiments.

Decision Feedback Equalizer for DS-UWB Systems

  • Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.500-508
    • /
    • 2008
  • Direct-sequence ultra-wideband(DS-UWB) system is being considered as one of promising transmission technologies for wireless personal area networks(WPANs). Due to relatively low spreading factors and huge bandwidth of transmit signal, a DS-UWB receiver needs to be equipped not only with a rake receiver but also with an equalizer, of which the equalizer is not required for traditional direct-sequence code division multiple access(DS-CDMA) systems. The number of rake fingers is limited in practice, influencing the performance of the subsequent equalizer. In this paper, we derive a decision feedback equalizer(DFE) for DS-UWB systems based on the minimum mean square error(MMSE) criterion, and investigate the impact of various parameters on the DFE performance in realistic scenarios. In particular, we propose an approach to improving the performance of the DFE using additional channel estimates for multipaths not combined in the rake receiver, and discuss how the accuracy of channel estimation affects desirable DFE configuration. Moreover, we present simulation results that show the impact of turbo equalization on the DFE performance.

Nonlinear System Modelling Using Neural Network and Genetic Algorithm

  • Kim, Hong-Bok;Kim, Jung-Keun;Hwang, Seung-Wook;Ha, Yun-Su;Jin, Gang-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.2-71
    • /
    • 2001
  • This paper deals with nonlinear system modelling using neural network and genetic algorithm. Application of neural network to control and identification is actively studied because of their approximating ability of nonlinear function. It is important to design the neural network with optimal structure for minimum error and fast response time. Genetic algorithm is getting more popular nowadays because of their simplicity and robustness. In this paper, We optimize neural network structure using genetic algorithm. The genetic algorithm uses binary coding for neural network structure and search for optimal neural network structure of minimum error and response time. Through extensive simulation, Optimal neural network structure is shown to be effective for ...

  • PDF

Link Adaptation for Full Duplex Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.92-100
    • /
    • 2018
  • This paper presents a link adaptation scheme for adaptive full duplex (AFD) systems. The signal modulation levels and communication link patterns are adaptively selected according to the changing channel conditions. The link pattern selection process consists of two successive steps such as a transmit-receive antenna pair selection based on maximum sum rate or minimum maximum symbol error rate, and an adaptive modulation based on maximum minimum norm. In AFD systems, the antennas of both nodes are jointly determined with modulation levels depending on the channel conditions. An adaptive algorithm with relatively low complexity is also proposed to select the link parameters. Simulation results show that the proposed AFD system offers significant bit error rate (BER) performance improvement compared with conventional full duplex systems with perfect or imperfect self-interference cancellation under the same fixed sum rate.