• Title/Summary/Keyword: Minimum Energy Control

Search Result 272, Processing Time 0.022 seconds

A Comparative Study of Transcription Techniques for Nonlinear Optimal Control Problems Using a Pseudo-Spectral Method

  • Kim, Chang-Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.264-277
    • /
    • 2015
  • This article investigates various transcription techniques for the Legendre pseudospectral (PS) method to compare the pros and cons of each approach. Eight combinations from four different types of collocation points and two discretization methods for dynamic constraints, which differentiate Legendre PS transcription techniques, are implemented to solve a carefully selected test set of nonlinear optimal control problems (NOCPs). The convergence property and prediction accuracy are compared to provide a useful guideline for selecting the best combination. The tested NOCPs consist of the minimum time, minimum energy, and problems with state and control constraints. Therefore, the results drawn from this comparative study apply to the solution of similar types of NOCPs and can mitigate much debate about the best combinations. Additionally, important findings from this study can be used to improve the numerical efficiency of the Legendre PS methods. Three PS applications to the aerospace engineering problems are demonstrated to prove this point.

The Improvement of the Performance of Solar Cooling and Heating Systems (II) - The Characteristics of an Absorption Refrigeration Powered by Solar Systems - (태양열에 의한 냉방 및 난방시스템의 성능향상(II) - 태양열을 이용한 흡수식 냉동기의 성능 -)

  • Park, M.S.;Kim, M.G.;Kim, H.K.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1989
  • The purpose of this study is to obtain the dynamic characteristics of an absorption refrigerator powered by solar energy by experiments. Since the absorption refrigerator power by solar energy should have the characteristics which is suitable for the intermittence and rarity of solar energy, not only the characteristics of the steady state operations but also the partial load and the transient operations should be considered. The minimum available temperature of the storage tank should be known, and the absorption refrigerator can be suitably selected for air-conditioning systems. In this study, the experimental data of the transient state for on-off and warming-up operations has been obtained. Also the experiments are performed which test the minimum available temperature of the storage tank. The results show that it takes 1 hour to get to the steady state of the absorption refrigerator, and the minimum available temperature of the storage tank is about $68^{\circ}C$, and show that in the partial load operations the performance of the absorption refrigerator is improved by applying the modified control method to on-off operations.

  • PDF

Improved BP-NN Controller of PMSM for Speed Regulation

  • Feng, Li-Jia;Joung, Gyu-Bum
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2021
  • We have studied the speed regulation of the permanent magnet synchronous motor (PMSM) servo system in this paper. To optimize the PMSM servo system's speed-control performance with disturbances, a non-linear speed-control technique using a back-propagation neural network (BP-NN) algorithm forthe controller design of the PMSM speed loop is introduced. To solve the slow convergence speed and easy to fall into the local minimum problem of BP-NN, we develope an improved BP-NN control algorithm by limiting the range of neural network outputs of the proportional coefficient Kp, integral coefficient Ki of the controller, and add adaptive gain factor β, that is the internal gain correction ratio. Compared with the conventional PI control method, our improved BP-NN control algorithm makes the settling time faster without static error, overshoot or oscillation. Simulation comparisons have been made for our improved BP-NN control method and the conventional PI control method to verify the proposed method's effectiveness.

Application Study of the Predictive Pulse Control for Floor Heating System (바닥난방을 위한 부하 예측식 펄스제어 방식의 적용성 연구)

  • Cho, Sung-Hwan;Kim, Seong-Su;Kim, Yong-Bong;Na, Hee-Hyeong
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.167-175
    • /
    • 2007
  • A predictive pulse control strategy as a means of improving the energy efficiency of radiant floor heating systems is explored. Experiments at the apartment with floor heating system are conducted to assess and compare the energy performance of the predictive pulse control strategy with an existing conventional control strategy. The Results showed that new suggested PPCM( Predictive Pulse Control Method) was available to decrease the gap of $1{\sim}1.5^{\circ}C$ between maximum and minimum indoor temperature of each rooms. Therefore PPCM method was favor to radiant floor heating system which have a delay time of 10-20 minutes for heat transfer by floor layers.

  • PDF

Diffraction of water waves by an array of vertical barriers and heterogeneous bottom

  • Mondal, R.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The interaction of head waves with an infinite row of identical, equally spaced, rectangular breakwaters is investigated in the presence of uneven bottom topography. Using linear water wave theory and matched eigenfunction expansion method, the boundary value problem is transformed into a system of linear algebraic equations which are numerically solved to know the velocity potentials completely. Utilizing this method, reflected and transmitted wave energy are computed for different physical parameters along with the wave field in the vicinity of breakwaters. It is observed that the wave field becomes more complicated when the incoming wavelength becomes smaller than the channel width. A critical ratio of the gap width to the channel width, corresponding to the inflection point of the transmitted energy variation, is identified for which 1/3 of the total energy is transmitted. Similarly, depending on the incident wavelength, there is a critical breakwater width for which a minimum energy is transmitted. Further, the accuracy of the computed results is verified by using the derived energy relation.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

Dynamic Analysis of Evaporator for Optimum Control in Refrigeration System (냉동사이클의 최적 제어를 위한 증발기 동특성 해석)

  • Jeong, S.K.;Hua, Li;Choi, K.H.;Yoon, J.I.;Kim, E.P.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • This paper presents numerical study on dynamic characteristics of evaporator to control evaporator superheat and compressor capacity with optimum condition in refrigeration system. It is very important to reduce energy consumption and to keep room temperature within a very restricted range with minimum oscillation in some special applications of the refrigeration system. Heat exchange is mainly happened in the evaporator. So, making mathematical model of evaporator and analyzing evaporator characteristics are necessary in order to control the superheat and the capacity of the system. A mathematical model based on the one dimensional partial differential equations representing mass and energy conservation and a tube-wall energy is described. A set of ordinary differential equation is formulated by integrating separately over the two regions(two-phase and vapor) generally presented in a heat exchanger.

  • PDF

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

Energy-Connectivity Tradeoff through Topology Control in Wireless Ad Hoc Networks

  • Xu, Mengmeng;Yang, Qinghai;Kwak, Kyung Sup
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • In this study, we investigate topology control as a means of obtaining the best possible compromise between the conflicting requirements of reducing energy consumption and improving network connectivity. A topology design algorithm capable of producing network topologies that minimize energy consumption under a minimum-connectivity constraint is presented. To this end, we define a new topology metric, called connectivity efficiency, which is a function of both algebraic connectivity and the transmit power level. Based on this metric, links that require a high transmit power but only contribute to a small fraction of the network connectivity are chosen to be removed. A connectivity-efficiency-based topology control (CETC) algorithm then assigns a transmit power level to each node. The network topology derived by the proposed CETC heuristic algorithm is shown to attain a better tradeoff between energy consumption and network connectivity than existing algorithms. Simulation results demonstrate the efficiency of the CECT algorithm.

Time Switching-based Analog Network Coding for Maximizing the Minimum Required Secrecy Capacity in Energy Harvesting Networks (에너지 하베스팅 네트워크에서 최소 요구 보안 용량을 최대화하기 위한 시간 전환 기반의 아날로그 네트워크 코딩)

  • Lee, Kisong;Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2022-2028
    • /
    • 2017
  • Recently, the energy shortage of sensors and the leakage of private information are considered as serious problems as the number of sensors is increasing due to the technological advance in Internet-of-Things. RF energy harvesting, in which sensors collect energy from external RF signals, and physical layer security become increasingly important to solve these problems. In this paper, we propose a time switching-based network analog coding for improving information security in wireless networks where the relay can harvest energy from source signals. We formulate 2-hop relay networks where an eavesdropper tries to overhear source signals, and find an optimal time switching ratio for maximizing the minimum required secrecy capacity using mathematical analysis. Through simulations under various environments, it is shown that the proposed scheme improves the minimum required secrecy capacity significantly, compared to the conventional scheme.