• Title/Summary/Keyword: Minimum Description Length (MDL)

Search Result 19, Processing Time 0.023 seconds

Prediction of Childhood Asthma Using Expectation Maximization and Minimum Description Length Algorithm

  • Kim, Hyo Seon;Park, Jong Suk;Nam, Dong Kyu;Jung, Yong Gyu
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.275-279
    • /
    • 2020
  • Due to the recent rapid industrialization worldwide, the number of pediatric asthma patients is increasing. And the fine dust containing heavy metals is linked to the characteristics of high toxic lead due to the increase heating in factory operation and automobile driving. It is the reason of arsenic increasing. In the treatment of pediatric asthma patients, drug administration, oral drug entry, and HMPC (Home Management Plan of Care) are used. In this paper, we analyze the relationship between the onset of asthma and the method of prescription for specific childhood asthma in the United States using EM (Expectation Maximization) and MDL (Minimum Description Length) algorithms. And the association is also analyzed by comparing the nature of specific congestion between the past prevalence of digestive asthma and the recent prevalence of environmental pollution.

Comparisons of AIC and MDL on Estimation Reliability of Number of Soureces in Direction Finding Problem (Direction Finding Problem에서의 신호원 갯수 추정 신뢰도에 관한 AIC와 MDL의 비교)

  • 이일근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.10
    • /
    • pp.842-849
    • /
    • 1990
  • In this paper, a couple of well-known methods for determination of the number of source signals impinging on sersor array in array processing are introduced and compared in terms of estimation accuracy. The one is the procedure issued by Akaike(Akaike's Information Criterion : AIC) and the other one by Schwartz and Rissanen(Minimum Description Length:MDL). This paper demonstrates, through computer simulation, that the AIC is more reliable than the MDL in such troublesome cases as very closely spaced source signlas, very limited number of sensors in the array, finite data sequences and/or low Signal-to-Noise ratio(S/N).

  • PDF

A New Distance Measure for a Variable-Sized Acoustic Model Based on MDL Technique

  • Cho, Hoon-Young;Kim, Sang-Hun
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.795-800
    • /
    • 2010
  • Embedding a large vocabulary speech recognition system in mobile devices requires a reduced acoustic model obtained by eliminating redundant model parameters. In conventional optimization methods based on the minimum description length (MDL) criterion, a binary Gaussian tree is built at each state of a hidden Markov model by iteratively finding and merging similar mixture components. An optimal subset of the tree nodes is then selected to generate a downsized acoustic model. To obtain a better binary Gaussian tree by improving the process of finding the most similar Gaussian components, this paper proposes a new distance measure that exploits the difference in likelihood values for cases before and after two components are combined. The mixture weight of Gaussian components is also introduced in the component merging step. Experimental results show that the proposed method outperforms MDL-based optimization using either a Kullback-Leibler (KL) divergence or weighted KL divergence measure. The proposed method could also reduce the acoustic model size by 50% with less than a 1.5% increase in error rate compared to a baseline system.

A Study on Improved MDL Technique for Optimization of Acoustic Model (향상된 MDL 기법에 의한 음향모델의 최적화 연구)

  • Cho, Hoon-Young;Kim, Sang-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.56-61
    • /
    • 2010
  • This paper describes optimization methods of acoustic models in HMM-based continuous speech recognition. Most of the conventional speech recognition systems use the same number of Gaussian mixture components for each HMM state. However, since the number of data samples available for each state is different from each other, it is possible to reduce the overall number of model parameters and the computational cost at the decoding step by optimizing the number of Gaussian mixture components. In this study, we introduced the Gaussian mixture weight term at the merging stage of Gaussian components in the minimum description length (MDL) based acoustic modeling optimization. Experimental results showed that the proposed method can obtain better ASR accuracy than the previous optimization method which does not consider the Gaussian mixture weight term.

AIC & MDL Algorithm Based on Beamspace, for Efficient Estimation of the Number of Signals (효율적인 신호개수 추정을 위한 빔공간 기반 AIC 및 MDL 알고리즘)

  • Park, Heui-Seon;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.617-624
    • /
    • 2021
  • The accurate estimation of the number of signals included in the received signal is required for the AOA(: Angle-of-Arrival) estimation, the interference suppression, the signal reception, etc. AIC(: Akaike Information Criterion) and MDL(: Minimum Description Length) algorithms, which are known as the typical algorithms to estimate the signal number, estimate the number of signals according to the minimum of each criterion. As the number of antenna elements increased, the estimation performance is enhanced, but the computational complexity is increased because values of criteria for entire antenna elements should be calculated for finding their minimum. In order to improve this problem, in this paper, we propose AIC and MDL algorithms based on the beamspace, which efficiently estimate the number of signals while reducing the computational complexity by reducing the dimension of an array antenna through the beamspace processing. In addition, we provide computer simulation results based on various scenarios for evaluating and analysing the estimation performance of the proposed algorithms.

Estimation of Optimal Mixture Number of GMM for Environmental Sounds Recognition (환경음 인식을 위한 GMM의 혼합모델 개수 추정)

  • Han, Da-Jeong;Park, Aa-Ron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.817-821
    • /
    • 2012
  • In this paper we applied the optimal mixture number estimation technique in GMM(Gaussian mixture model) using BIC(Bayesian information criterion) and MDL(minimum description length) as a model selection criterion for environmental sounds recognition. In the experiment, we extracted 12 MFCC(mel-frequency cepstral coefficients) features from 9 kinds of environmental sounds which amounts to 27747 data and classified them with GMM. As mentioned above, BIC and MDL is applied to estimate the optimal number of mixtures in each environmental sounds class. According to the experimental results, while the recognition performances are maintained, the computational complexity decreases by 17.8% with BIC and 31.7% with MDL. It shows that the computational complexity reduction by BIC and MDL is effective for environmental sounds recognition using GMM.

A Statistically Model-Based Adaptive Technique to Unsupervised Segmentation of MR Images (자기공명영상의 비지도 분할을 위한 통계적 모델기반 적응적 방법)

  • Kim, Tae-Woo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.286-295
    • /
    • 2000
  • We present a novel statistically adaptive method using the Minimum Description Length(MDL) principle for unsupervised segmentation of magnetic resonance(MR) images. In the method, Markov random filed(MRF) modeling of tissue region accounts for random noise. Intensity measurements on the local region defined by a window are modeled by a finite Gaussian mixture, which accounts for image inhomogeneities. The segmentation algorithm is based on an iterative conditional modes(ICM) algorithm, approximately finds maximum ${\alpha}$ posteriori(MAP) estimation, and estimates model parameters on the local region. The size of the window for parameter estimation and segmentation is estimated from the image using the MDL principle. In the experiments, the technique well reflected image characteristic of the local region and showed better results than conventional methods in segmentation of MR images with inhomogeneities, especially.

  • PDF

Refinement of Bayesian Networks Using Minimum Description Length and Evolutionary Algorithm (진화 알고리즘과 MDL을 이용한 베이지안 네트워크 갱신)

  • Kim Kyung-Joong;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.628-630
    • /
    • 2005
  • 베이지안 네트워크는 확률이론에 기초해 불확실성이 존재하는 실세계 문제를 해결하는데 많은 기여를 하고 있다. 최근 네트워크 구조를 데이터로부터 자동으로 학습하는 많은 연구가 이루어져 보다 손쉽게 많은 사람들이 사용할 수 있게 되었다. 하지만 한번 학습하여 고정된 네트워크의 구조는 새롭게 수집되는 데이터의 특성을 잘 반영하지 못하는 문제를 지니고 있다. 환경의 변화에 맞게 지속적으로 네트워크 구조를 갱신하기 위한 연구가 진행되고 있으며 본 연구에서는 Lam이 제안한 MDL기반 평가함수를 이용한 진화적 갱신 방법을 제안하여 갱신 성능을 향상시키고자 한다. 벤치마크 네트워크인 ASIA에 대한 실험 결과 제안한 방법이 기존의 지역적 탐색 방법에 비해 향상된 성능을 제공함을 확인하였다.

  • PDF

Minimum Message Length and Classical Methods for Model Selection in Univariate Polynomial Regression

  • Viswanathan, Murlikrishna;Yang, Young-Kyu;WhangBo, Taeg-Keun
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.747-758
    • /
    • 2005
  • The problem of selection among competing models has been a fundamental issue in statistical data analysis. Good fits to data can be misleading since they can result from properties of the model that have nothing to do with it being a close approximation to the source distribution of interest (for example, overfitting). In this study we focus on the preference among models from a family of polynomial regressors. Three decades of research has spawned a number of plausible techniques for the selection of models, namely, Akaike's Finite Prediction Error (FPE) and Information Criterion (AIC), Schwartz's criterion (SCH), Generalized Cross Validation (GCV), Wallace's Minimum Message Length (MML), Minimum Description Length (MDL), and Vapnik's Structural Risk Minimization (SRM). The fundamental similarity between all these principles is their attempt to define an appropriate balance between the complexity of models and their ability to explain the data. This paper presents an empirical study of the above principles in the context of model selection, where the models under consideration are univariate polynomials. The paper includes a detailed empirical evaluation of the model selection methods on six target functions, with varying sample sizes and added Gaussian noise. The results from the study appear to provide strong evidence in support of the MML- and SRM- based methods over the other standard approaches (FPE, AIC, SCH and GCV).

  • PDF

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.