• Title/Summary/Keyword: Minimized System

Search Result 1,218, Processing Time 0.032 seconds

A numerical method for improving the reliability of knee translation measurement in skin marker-based motion analysis

  • Wang, Hongsheng;Zheng, Nigel
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.269-277
    • /
    • 2014
  • In skin-marker based motion analysis, knee translation measurement is highly dependent on a pre-selected reference point (functional center) on each segment determined by the location of anatomical landmarks. However, the placement of skin markers on palpable anatomical landmarks (i.e., femoral epicondyles) has limited reproducibility. Thus, it produces large variances in knee translation measurement among different subjects, as well as across studies. In order improve the repeatability of knee translation measurement, in this study an optimization method was introduced, by which the femoral functional center was numerically determined. At that point the knee anteroposterior translation during the stance phase of walking was minimized. This new method was tested on 30 healthy subjects during walking in gait lab with motion capture system. Using this new method, the impact of skin marker position (at anatomical landmarks) on the knee translation measurement has been minimized. In addition, the ranges of anteroposterior knee translations during stance phase were significantly (p<0.001) smaller than those measured by conventional method which relies on a pre-selected functional center ($11.1{\pm}3.5mm$ vs. $19.9{\pm}5.5mm$). The results of anteroposterior translation using this new method were very close to a previously reported knee translation (12.4 mm) from dual fluoroscopic imaging technique. Moreover, this new method increased the reproducibility of knee translation measurement by 50%.

Geneation of Optimized Robotic Assembly Sequences Via Simulated Annealing Method (자동조립에서 시뮬레이트 어닐링을 이용한 조립순서 최적화)

  • Hong, Dae-Sun;Cho, Hyung-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.213-221
    • /
    • 1996
  • An assembly sequence is considered to be optimal when is minimizes assembly cost while satisfying assembly constraints. To derive such an optimal sequence for robotic assembly, this paper proposes a method using a simulated annealing algorithm. In this method, an energy funciton is derived inconsideration of both the assembly constraints and the assembly cost. The energy function thus derived is iteratively minimized until no further change in energy occurs. During the minimization, the energy is occationally perturbed probabilistically in order to escape from local minima. The minimized energy yields an optimal assembly sequence. To show the effectiveness of the proposed method, case studies are presented for industrial products such as an electrical relay and an automobil alternator. The performance is analyzed by comparing the results with those of a neural network-based method, based upon the optimal solutions of an expert system.

QuLa: Queue and Latency-Aware Service Selection and Routing in Service-Centric Networking

  • Smet, Piet;Simoens, Pieter;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.306-320
    • /
    • 2015
  • Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables.

4:2:1 compromise plans using Min-Max method (Min-Max 방법을 적용한 4:2:1 절충적 계획)

  • 최재혁;강창욱
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.47
    • /
    • pp.1-10
    • /
    • 1998
  • Testing high reliability devices under nomal operating condition is difficult, because the devices are not likely to fail in the relatively short time available for tests. For most applications it is necessary to accelerate the causes of failure by increasing a stress above its nomal value. Previous accelerated life test(ALT) plans have shown how to find optimum allocation, lowest stress and sample size subject to minimizing the variance of mean life estimator. In these ALT plans, the highest acceptable test-stress was assumed to be specified in advance by the experimenter but there is no guidance for selecting it. This assumption is, however, inappropriate for many applications. Testing devices at too-high stress levels can invalidate the extrapolation model, or introduce failure mechanisms that are not anticipated under nomal operating conditions. In this paper, we propose new 4:2:1 compromise plans using Min-Max method to minimize this risk and present minimized test-stress levels(max, middle, min), and find sample allocation based on Min-Max 4:2:1 compromise plans. In result, we compare previous 4:2:1 compromise plans specified maximum test-stress with Min-Max 4:2:1 compromise plans minimized maximum test-stress.

  • PDF

A Study on Application of ECO Driving Pattern of Electric Multiple Unit in ATO System (Focus on Simulation Results) (ATO 시스템 전동차의 ECO 운행패턴 적용에 관한 연구 (시뮬레이션 결과를 중심으로))

  • Kim, Kyujoong;Lee, Keunoh;Kim, Juyong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.6-13
    • /
    • 2013
  • This study focuses on finding ECO driving patterns which consider driving safety of the ATO system train and reliability and which optimize efficiency of the driving energy consumption. Research results derived by performing simulation of those 5 models show that the emergency braking which affects safety of passenger and the machinery is minimized, and safe driving speed is maintained by the prohibition of drastic acceleration/deceleration, coasting and constant-speed driving. Therefore if this result is applied to the urban railway train by amending or making ATO program to save energy usage that improve environmental quality, its effects as ECO driving pattern is huge.

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF

Optimal Design of a Levitation Magnet for an OLED System by using Evolution Strategy (진화론적 방법을 이용한 OLED 시스템용 부상용 전자석의 최적 설계)

  • Lim, Hyoung-Woo;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.541-546
    • /
    • 2006
  • In a levitation magnet system with large air gap, numerical method is needed because analytic method cannot consider the leakage flux properly. This paper conducted an optimal design of a levitation magnet system with large air gap which was used for an OLED system, where evolution strategy was adopted for optimal design algorithm. Levitation forces near the initial design were calculated first by using finite element method to reduce the computation time. During the optimization process, levitation forces of arbitrary dimension were obtained using the interpolation of the levitation forces which were calculated previously Weight of the maget system was chosen as the object function and it was used minimized.

Design of Stable Time-varying Sliding Mode System

  • Kim, Ga-Gue;Ma, Jin-Suk;Lim, Chae-Deok;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.2-62
    • /
    • 2001
  • In this paper, we present a new time-varying sliding mode system that guarantees stable error convergence. The previous papers have dealt with stability of the time-varying sliding mode system by point-wisely investigating the stability of time-invariant system every time. However, it may be unstable even though it guarantees time-invariant stability every time, We designed the time-varying sliding surface so that the resultant time-varying system on sliding mode may be Stable. The initial sliding surface is obtained so that shifting distance of the surface may be minimized with respect to an initial error, and the intercept is produced so that the surface may pass the initial error.

  • PDF

Energy D2D Tx-Rx assignment in the Cellular System

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.41-46
    • /
    • 2017
  • In this paper, we investigate the D2D Transmitter(Tx) and Receiver(Rx) pair assignment problem in the cellular system where D2D users share the uplink resource of the cellular system. Sharing the uplink resource of the cellular system may cause interference to the cellular system, though it is beneficial to improve the D2D user Capacity. Therefore, to protect the cellular users, D2D transmit power should be carefully controlled. In this work, we focus on optimal Tx-Rx assignment in such a way that the total transmit power of users is minimized. First, we consider the optimum Tx-Rx assignment in general and the corresponding complexity. Then, we propose an iterative D2D Tx-Rx assignment algorithm with low complexity that can minimize total transmit power of users. Finally, we present the numerical examples that show the complexity and the convergence to the unique transmit power level.

Cooling System Control of Building Integrated Photovoltaic Generation Using Micro-controller (마이크로 컨트롤러를 이용한 BIPV 발전의 냉각시스템 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1120-1121
    • /
    • 2008
  • This paper is proposed cooling system of BIPV(Building Integrated Photovoltaic) by micro-controller. The output power of PV generation system is not systematically tracked and influenced by various factors; solar irradiance, solar cell temperature. The temperature of solar module should be minimized to increase electrical output. Therefore, it is proposed that micro-controller cools to decrease temperature of solar module using thermoelement. The validity of this paper is proved by comparing solar module temperature of cooling system and un-cooling system.

  • PDF