• 제목/요약/키워드: Minimal path sets

검색결과 17건 처리시간 0.018초

RBD와 FTA의 논리구조와 신뢰성 중요도의 고찰에 의한 시스템 비시간가동률 개선방안 (Improvement Strategy of System Unavailability by Review of Logical Structure and Reliability Importance of Reliability Block Diagram (RED) and Fault Tree Analysis (FTA))

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제13권3호
    • /
    • pp.45-53
    • /
    • 2011
  • The research proposes seven elimination rules of redundant gates and blocks in Fault Tree Analysis (FTA) and Reliability Block Diagram (RBD). The computational complexity of cut sets and path sets is NP-hard. In order to reduce the complexity of Minimal Cut Set (MCS) and Minimal Path Set (MPS), the paper classifies generation algorithms. Moreover, the study develops six implementation steps which reflect structural importance (SI) and reliability importance (RI) from Reliability Centered Maintenance (RCM) that a priority of using the functional logic among components is to reduce (improve) the system unavailability (or availability). The proposed steps include efficient generation of state structure function by Rare Event Enumeration (REA). Effective use of importance measures, such as SI and ill measures, is presented based on the number and the size of MCS and MPS which is generated from the reference[5] of this paper. In addition, numerical examples are presented for practitioners to obtain the comprehensive understanding of six steps that is proposed in this research.

안전필수 계통의 리스크 평가를 위한 일회 순회 고장수목 모듈 검색 알고리즘 (One-time Traversal Algorithm to Search Modules in a Fault Tree for the Risk Analysis of Safety-critical Systems)

  • 정우식
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.100-106
    • /
    • 2015
  • A module or independent subtree is a part of a fault tree whose child gates or basic events are not repeated in the remaining part of the fault tree. Modules are necessarily employed in order to reduce the computational costs of fault tree quantification. This quantification generates fault tree solutions such as minimal cut sets, minimal path sets, or binary decision diagrams (BDDs), and then, calculates top event probability and importance measures. This paper presents a new linear time algorithm to detect modules of large fault trees. It is shown through benchmark tests that the new method proposed in this study can very quickly detect the modules of a huge fault tree. It is recommended that this method be implemented into fault tree solvers for efficient probabilistic safety assessment (PSA) of nuclear power plants.

비가략(非可略) 구조를 갖는 네트워크의 단점간 가용도 평가 (Terminal-Pair Availability Evaluation in Irreducible Structure Communication Networks)

  • 이준혁;김경목;오영환
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제8권4호
    • /
    • pp.181-192
    • /
    • 2008
  • In this paper, we proposed effective algorithm that do Availability of communication network account using total probability formula. Use path tracing method about PSTN linked with MSC in WCDMA considering occasion that do not consider mobility of terminal and Availability did account. First, express minimum path series gathering by structure function after network that do modeling by stochastic graph for communication network saves all minimal path sets between particular two abutments and we gain Availability value in angular variable after express structure function by Boolean operation form and Availability between two abutments did account.

  • PDF

Computer-Aided Decision Analysis for Improvement of System Reliability

  • Ohm, Tai-Won
    • 대한안전경영과학회지
    • /
    • 제2권4호
    • /
    • pp.91-102
    • /
    • 2000
  • Nowadays, every kind of system is changed so complex and enormous, it is necessary to assure system reliability, product liability and safety. Fault tree analysis(FTA) is a reliability/safety design analysis technique which starts from consideration of system failure effect, referred to as “top event”, and proceeds by determining how these can be caused by single or combined lower level failures or events. So in fault tree analysis, it is important to find the combination of events which affect system failure. Minimal cut sets(MCS) and minimal path sets(MPS) are used in this process. FTA-I computer program is developed which calculates MCS and MPS in terms of Gw-Basic computer language considering Fussell's algorithm. FTA-II computer program which analyzes importance and function cost of VE consists. of five programs as follows : (l) Structural importance of basic event, (2) Structural probability importance of basic event, (3) Structural criticality importance of basic event, (4) Cost-Failure importance of basic event, (5) VE function cost analysis for importance of basic event. In this study, a method of initiation such as failure, function and cost in FTA is suggested, and especially the priority rank which is calculated by computer-aided decision analysis program developed in this study can be used in decision making determining the most important basic event under various conditions. Also the priority rank can be available for the case which selects system component in FMEA analysis.

  • PDF

BDD를 이용한 사고수목 정상사상확률 계산 (Calculation of Top Event Probability of Fault Tree using BDD)

  • 조병호;염병수;김상암
    • 한국정보통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.654-662
    • /
    • 2016
  • 사고수목을 이루는 게이트나 기본사상이 많아질수록 정상사상 확률의 정확한 계산이 어려워진다. 이를 극복하기 위해 BDD 방법을 적용하면 중소형 사고수목의 경우 짧은 시간에 근사계산 없이 정확한 값을 구할 수 있다. CUDD 함수를 이용하여 사고수목을 BDD로 변환하고 그로부터 정상사상의 발생확률을 구하는 고장경로 탐색 알고리즘을 고안하였다. 후방탐색 알고리즘은 전방탐색 알고리즘보다 고장경로의 탐색과 확률계산 시간에서 효과적이다. 이 탐색 알고리즘은 BDD에서 고장경로를 찾는데 있어서 탐색시간을 줄일 수 있고, 해당 사고수목의 단절집합과 최소단절집합을 찾는 유용한 방법이다.

행열변현에 의한 통신망의 신뢰도 계정에 관한 연구 (A Study on the Reliability Evaluation of Communication Networks by Matrix Transformation)

  • 김영근;오영환
    • 한국통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.379-389
    • /
    • 1988
  • 본 논문에서는 통신방의 2-상태 스취칭 실패함수를 구하기 위한 알고리즘과 단섭간 신뢰도 계성방법을 제시하였다. 통신망을 그래프로 모형화하고, 이 그래프에 대한 일련의 행열변환을 함으로서 모든 통신통로를 차단하는 최초컷-\ulcornerV 행열을 구하였으며 최소 컷-\ulcornerV행열로부터 2-상태 스위칭 실패함수를 구하였다. 또한 2-상태 스위칭 실패함수에 확률변수를 대응시켜 통신망의 단점간 신뢰도를 계정하였다. 제안된 알고리즘을 설명하기 위하여 몇가지 예를 보였으며 복잡하고 규모가 큰 망에 대한 단점간 신뢰도를 계정하기 위해서 전산기 프로그램을 제시하였다.

  • PDF

Intraoperative Neurophysiological Monitoring : A Review of Techniques Used for Brain Tumor Surgery in Children

  • Kim, Keewon;Cho, Charles;Bang, Moon-suk;Shin, Hyung-ik;Phi, Ji-Hoon;Kim, Seung-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권3호
    • /
    • pp.363-375
    • /
    • 2018
  • Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal age-adjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar motor evoked potentials could be combined to prevent injury of the cranial nerves or nucleus. IOM for cerebral tumors can adopt direct cortical stimulation or direct subcortical stimulation to map the corticospinal pathways in the vicinity of lesion. IOM is a diagnostic as well as interventional tool for neurosurgery. To prove clinical evidence of it is not simple. Randomized controlled prospective studies may not be possible due to ethical reasons. However, prospective longitudinal studies confirming prognostic value of IOM are available. Furthermore, oncological outcome has also been shown to be superior in some brain tumors, with IOM. New methodologies of IOM are being developed and clinically applied. This review establishes a composite view of techniques used today, noting differences between adult and pediatric monitoring.