• Title/Summary/Keyword: Mini-plate

Search Result 51, Processing Time 0.023 seconds

Design and Performance Evaluation of Mini-Lightweight Piezo-Composite Actuators

  • Tran, Anh Kim;Yoon, Kwang-Joon
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.327-338
    • /
    • 2009
  • In this paper, through an evaluation process conducted on several designs of mini-LIPCA (Lightweight Piezo-Composite curved Actuator), an optimal design of a mini-LIPCA has been proposed. Comparing with the LIPCA-C2, the design of the mini-LIPCA comes with reduced overall size and a thinner active layer. Since a variation in the number and lay-up of fiber composite layers may strongly affect the performance of the device, one is able to configure several designs of mini-LIPCA. The evaluation process is then followed in order to determine a configuration which characterizes the possibly optimal performance. That is, a design of a mini-LIPCA is said to be optimal if it is capable of producing a maximum out-of-plane displacement. The size of the LIPCA to be investigated was selected to be $10\;mm\;{\times}\;20\;mm$ in which the thickness of PZT plate is about 0.1 mm. The thickness of glass/epoxy and carbon/epoxy are about 0.09 mm and 0.1 mm, respectively. The evaluation process has been conducted thoroughly, i.e., analytical estimation, numerical approximation and the experimental measurement are all involved. Firstly, the design equation was used to calculate essential parameters of proposed lay-up configurations. Secondly, ANSYS, a commercial FEA package, was utilized to estimate displacement outputs of the actuators upon being excited. Finally, experimental measurements were able to verify the predicted results.

RESORBABLE PLATES FOR THE FIXATION OF MANDIBULAR FRACTURES: CASE REPORTS AND REVIEW OF THE LITERATURE (하악골 골절 치료시 생체 흡수성 고정판 사용: 증례 보고 및 문헌고찰)

  • You, Jae-Seek;Kim, Su-Gwan;Kim, Hak-Kyun;Moon, Seong-Yong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.182-190
    • /
    • 2008
  • Fracture of mandible is the most frequent fracture among many types of maxillofacial fracture, and reduction of mandible fracture is performed using various methods of treatment to maintain bonding strength of fractured bone. Among these treatment of bone fracture, a semirigid fixation method which can reduce the period of intermaxillary fixation using metal mini plate under general or local anesthesia is spotlighted these days. The metal mini plate used during this semirigid fixation procedure is Titanium which is bio-inactive one and was used widely, but because the side effect of fracture reduction using titanium have been demonstrated recently, fracture reduction using biodegradable plate become to attract people's attention. The purpose of this study was to report the clinical case and review of the literature with the reduction of mandible fracture using biodegradable plate.

Microstructural characteristics of a fresh U(Mo) monolithic mini-plate: Focus on the Zr coating deposited by PVD

  • Iltis, Xaviere;Drouan, Doris;Blay, Thierry;Zacharie, Isabelle;Sabathier, Catherine;Onofri, Claire;Steyer, Christian;Schwarz, Christian;Baumeister, Bruno;Allenou, Jerome;Stepnik, Bertrand;Petry, Winfried
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2629-2639
    • /
    • 2021
  • Within the frame of the EMPIrE test, four monolithic mini-plates were irradiated in the ATR reactor. In two of them, the monolithic U(Mo) foil had been PVD-coated with Zr before the plate manufacturing. Extensive microstructural characterizations were performed on a fresh archive mini-plate, using Optical Microscopy (OM), Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS), Electron Backscattered Diffraction (EBSD) and Focused Ion Beam (FIB)/Transmission Electron Microscopy (TEM) with nano EDS. A particular attention was paid to the examination of the U(Mo) foil, the PVD coating, the cladding/Zr and Zr/U(Mo) interfaces. The Zr coating has a thickness around 15 ㎛. It has a columnar microstructure and appears dense. The cohesion of the cladding/Zr and Zr/U(Mo) interfaces seems to be satisfactory. An almost continuous layer with a thickness of the order of 100-300 nm is present at the cladding/Zr interface and corresponds to an oxidized part of the Zr coating. At the Zr/U(Mo) interface, a thin discontinuous layer is observed. It could correspond to locally oxidized U(Mo). This work provides a basis for interpreting the results of characterizations on EMPIrE irradiated plates.

Maxillary protraction using customized mini-plates for anchorage in an adolescent girl with skeletal Class III malocclusion

  • Liang, Shuran;Xie, Xianju;Wang, Fan;Chang, Qiao;Wang, Hongmei;Bai, Yuxing
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.346-355
    • /
    • 2020
  • The treatment of skeletal Class III malocclusion in adolescents is challenging. Maxillary protraction, particularly that using bone anchorage, has been proven to be an effective method for the stimulation of maxillary growth. However, the conventional procedure, which involves the surgical implantation of mini-plates, is traumatic and associated with a high risk. Three-dimensional (3D) digital technology offers the possibility of individualized treatment. Customized mini-plates can be designed according to the shape of the maxillary surface and the positions of the roots on cone-beam computed tomography scans; this reduces both the surgical risk and patient trauma. Here we report a case involving a 12-year-old adolescent girl with skeletal Class III malocclusion and midface deficiency that was treated in two phases. In phase 1, rapid maxillary expansion and protraction were performed using 3D-printed mini-plates for anchorage. The mini-plates exhibited better adaptation to the bone contour, and titanium screw implantation was safer because of the customized design. The orthopedic force applied to each mini-plate was approximately 400-500 g, and the plates remained stable during the maxillary protraction process, which exhibited efficacious orthopedic effects and significantly improved the facial profile and esthetics. In phase 2, fixed appliances were used for alignment and leveling of the maxillary and mandibular dentitions. The complete two-phase treatment lasted for 24 months. After 48 months of retention, the treatment outcomes remained stable.

On the Stability of the Permanently Bent Mini-plate in Reconstructive Surgery (플레이트의 소성변형 과정이 재건술에서 플레이트 안정성에 미치는 영향)

  • Park, Si Myung;Lee, Deukhee;Noh, Gunwoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.234-241
    • /
    • 2016
  • Conventional bent plate used in mandibular reconstruction surgery needs safety verification since its mechanical properties are changed due to the plastic deformation during the bending process. In this study we investigate stability of the plastically deformed plate and the plate with the same shape without plastic deformation through the finite element analysis(FEA). First we simulate the process of plate bending to fit the defect in patient. Then, the other plate is modelled to represent a customized plate with the same shape of the plastically deformed one, but without any residual stresses from plastic deformation. After binding these plates to the mandible, we conduct the masticatory simulation. Finally, we compare the resulting Von Mises stress of the customized plate and of the bent plate. The bent plate shows much higher stress than the customized one due to the residual stresses form the bending process. The study shows that plastic deformation in the plate may decrease the safety of the reconstruction surgery.

The effect of fixation plate use on bone healing during the reconstruction of mandibular defects

  • Hong, Khang Do Gia;Kim, Seong-Gon;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.5
    • /
    • pp.276-284
    • /
    • 2019
  • Objectives: This study sought to compare efficiency results between the use of a customized implant (CI) and a reconstruction plate (RP) in mandibular defect reconstruction in an animal model. Materials and Methods: Fifteen rabbits underwent surgery to create a defect in the right side of the mandible and were randomly divided into two groups. For reconstruction of the mandibular defect, the RP group (n=5) received five-hole mini-plates without bone grafting and the CI group (n=10) received fabricated CIs based on the cone-beam computed tomography (CBCT) data taken preoperatively. The CI group was further divided into two subgroups depending on the time of CBCT performance preoperatively, as follows: a six-week CI (6WCI) group (n=5) and a one-week CI (1WCI) group (n=5). Daily food intake amount (DFIA) was measured to assess the recovery rate. Radiographic images were acquired to evaluate screw quantity. CBCT and histological examination were performed in the CI subgroup after sacrifice. Results: The 1WCI group showed the highest value in peak average recovery rate and the fastest average recovery rate. In terms of reaching a 50% recovery rate, the 1WCI group required the least number of days as compared with the other groups ($2.6{\pm}1.3days$), while the RP group required the least number of days to reach an 80% recovery rate ($7.8{\pm}2.2days$). The 1WCI group showed the highest percentage of intact screws (94.3%). New bone formation was observed in the CI group during histological examination. Conclusion: Rabbits with mandibular defects treated with CI showed higher and faster recovery rates and more favorable screw status as compared with those treated with a five-hole mini-plate without bone graft.

Dynamic analysis of sandwich plate with viscoelastic core based on an improved method for identification of material parameters in GHM viscoelastic model

  • Mojtaba Safari;Hasan Biglari;Mohsen Motezaker
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.743-757
    • /
    • 2023
  • In this paper, the dynamic response of a simply-supported composite sandwich plate with a viscoelastic core based on the Golla-Hughes-McTavish (GHM) viscoelastic model is investigated analytically. The formulation is developed using the three-layered sandwich panel theory. Hamilton's principle has been employed to derive the equations of motion. Since classical models, like kelvin-voigt and Maxwell models, cannot express a comprehensive description of the dynamic behavior of viscoelastic material, the GHM method is used to model the viscoelastic core of the plate in this research. The main advantage of the GHM model in comparison with classical models is the consideration of the frequency-dependent characteristic of viscoelastic material. Identification of the material parameters of GHM mini-oscillator terms is an essential procedure in applying the GHM model. In this study, the focus of viscoelastic modeling is on the development of GHM parameters identification. For this purpose, a new method is proposed to find these constants which express frequency-dependent behavior characterization of viscoelastic material. Natural frequencies and loss factors of the sandwich panel based on ESL and three-layered theories in different geometrics are described at 30℃ and 90℃; also, the comparisons show that obtained natural frequencies are grossly overestimated by ESL theory. The argumentations of differences in natural frequencies are also illustrated in detail. The obtained results show that the GHM model presents a more accurate description of the plate's dynamic response by considering the frequency dependency behavior of the viscoelastic core.

IATROGENIC IMPACTION OF LOWER LEFT PERMANENT CANINE : CASE REPORT (하악 영구 견치의 의원성 매복에 대한 증례 보고)

  • Kim, Song-Yi;Choi, Sung-Chul;Choi, Yeong-Chul;Park, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.339-344
    • /
    • 2008
  • When a delayed eruption of tooth is diagnosed, the causative factor should be detected before an establishment of treatment plan, if possible. Although a panoramic radiograph is enough to evaluate the position of tooth and the stage of tooth development, a 3-D Dental CT would be a powerful tool to reveal a spatial relationships between objects. The reported case showed a delayed eruption of lower left permanent canine and a mini-plate with screws adjacent to the impacted canine. Although the screws adjacent to the root of impacted tooth showed a close proximity, it was not presumed that these screws would interfere the eruption of the tooth. The impacted canine did not show any spontaneous eruption during observation. After the mini-plate and screws were removed, an orthodontic traction using elastic power chain was performed. The position of mini-plates and screws should be carefully designed to avoid damaging the tooth follicles or tooth roots in the jaw. Also the screws should be removed before an orthodontic traction to prevent damaging the root surface of impacted tooth.

  • PDF