• Title/Summary/Keyword: Mini-UAV

Search Result 9, Processing Time 0.025 seconds

Development and Estimation of Low Price-Small-Autopilot UAS for Geo-spatial Information Aquisition (지형정보획득용 저가 소형 자동항법 UAS개발 및 평가)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1343-1351
    • /
    • 2014
  • Recent technological advances in wireless networks and microelectromechanical systems (MEMS) have led to the development of different types of mini-UAVs and their utilizations in various ways. This study endeavors to develop a low-cost mini-UAV with autonomous flight capability, in order to obtain geospatial information of a small or medium-sized area, and also assess its flight stability by comparing the predetermined flight paths against the actual flight paths. Based on a post-development flight test, stable flight has been proven achievable as follows: the maximum endurance speed is 1 hour, the flying distance is 50km, the horizontal accuracy of flight paths is about ${\pm}6{\sim}8m$, and the altitude accuracy is about ${\pm}8m$. Therefore, it is deemed that high-resolution images which can be utilized for geospatial information are obtainable. This indicates that a UAV flying at an altitude of 200m can acquire images across a $2km{\times}3km$ area on the ground within 25 minutes, which validates its high usability for obtaining high-solution images at low altitudes in the future.

Streamlined Rotors Mini Rotorcraft : Trajectory Generation and Tracking

  • Beji Lotfi;Abichou Azgal
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.87-99
    • /
    • 2005
  • We present in this paper the stabilization (tracking) with motion planning of the six independent configurations of a mini unmanned areal vehicle equipped with four streamlined rotors. Naturally, the yaw-dynamic can be stabilized without difficulties and independently of other motions. The remaining dynamics are linearly approximated around a small roll and pitch angles. It will be shown that the system presents a flat output that is likely to be useful in the motion generation problem. The tracking feedback controller is based on receding horizon point to point steering. The resulting controller involves the lift (collective) time derivative for what flatness and feedback linearization are used. Simulation tests are performed to progress in a region with approximatively ten-meter-buildings.

Image Georeferencing using AT without GCPs for a UAV-based Low-Cost Multisensor System (UAV 기반 저가 멀티센서시스템을 위한 무기준점 AT를 이용한 영상의 Georeferencing)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.249-260
    • /
    • 2009
  • The georeferencing accuracy of the sensory data acquired by an aerial monitoring system heavily depends on the performance of the GPS/IMU mounted on the system. The employment of a high performance but expensive GPS/IMU unit causes to increase the developmental cost of the overall system. In this study, we simulate the images and GPS/IMU data acquired by an UAV-based aerial monitoring system using an inexpensive integrated GPS/IMU of a MEMS type, and perform the image georeferencing by applying the aerial triangulation to the simulated sensory data without any GCP. The image georeferencing results are then analyzed to assess the accuracy of the estimated exterior orientation parameters of the images and ground points coordinates. The analysis indicates that the RMSEs of the exterior orientation parameters and ground point coordinates is significantly decreased by about 90% in comparison with those resulted from the direct georeferencing without the aerial triangulation. From this study, we confirmed the high possibility to develop a low-cost real-time aerial monitoring system.

Spectrum- and Energy- Efficiency Analysis Under Sensing Delay Constraint for Cognitive Unmanned Aerial Vehicle Networks

  • Zhang, Jia;Wu, Jun;Chen, Zehao;Chen, Ze;Gan, Jipeng;He, Jiangtao;Wang, Bangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1392-1413
    • /
    • 2022
  • In order to meet the rapid development of the unmanned aerial vehicle (UAV) communication needs, cooperative spectrum sensing (CSS) helps to identify unused spectrum for the primary users (PU). However, multi-UAV mode (MUM) requires the large communication resource in a cognitive UAV network, resulting in a severe decline of spectrum efficiency (SE) and energy efficiency (EE) and increase of energy consumption (EC). On this account, we extend the traditional 2D spectrum space to 3D spectrum space for the UAV network scenario and enable UAVs to proceed with spectrum sensing behaviors in this paper, and propose a novel multi-slot mode (MSM), in which the sensing slot is divided into multiple mini-slots within a UAV. Then, the CSS process is developed into a composite hypothesis testing problem. Furthermore, to improve SE and EE and reduce EC, we use the sequential detection to make a global decision about the PU channel status. Based on this, we also consider a truncation scenario of the sequential detection under the sensing delay constraint, and further derive a closed-form performance expression, in terms of the CSS performance and cooperative efficiency. At last, the simulation results verify that the performance and cooperative efficiency of MSM outperforms that of the traditional MUM in a low EC.

Development of a 65hp, Twin-Spool, Mini-Turboshaft Engine Core for UAV (UAV용 65마력급 초소형 분리축 터보샤프트 엔진 코어 개발)

  • 이시우;김경수;이기호;김승우
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.253-256
    • /
    • 2003
  • The engine core of a 65hp-turboshaft engine for UAV is developed and modified into a 55lbf-turbojet engine. Since the core engine is installed with a propelling nozzle, which has the same mass flow characteristics as the power generator of the turboshaft engine its mechanical and aerodynamic characteristics are basically the same as those of the complete engine. Engine output is not shaft power but thrust force that is easier to measure. The core engine is very useful for core test purpose. Besides, the core engine itself can be directly used for propulsion of small air vehicles.

  • PDF

Floop: An efficient video coding flow for unmanned aerial vehicles

  • Yu Su;Qianqian Cheng;Shuijie Wang;Jian Zhou;Yuhe Qiu
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.615-626
    • /
    • 2023
  • Under limited transmission conditions, many factors affect the efficiency of video transmission. During the flight of an unmanned aerial vehicle (UAV), frequent network switching often occurs, and the channel transmission condition changes rapidly, resulting in low-video transmission efficiency. This paper presents an efficient video coding flow for UAVs working in the 5G nonstandalone network and proposes two bit controllers, including time and spatial bit controllers, in the flow. When the environment fluctuates significantly, the time bit controller adjusts the depth of the recursive codec to reduce the error propagation caused by excessive network inference. The spatial bit controller combines the spatial bit mask with the channel quality multiplier to adjust the bit allocation in space to allocate resources better and improve the efficiency of information carrying. In the spatial bit controller, a flexible mini graph is proposed to compute the channel quality multiplier. In this study, two bit controllers with end-to-end codec were combined, thereby constructing an efficient video coding flow. Many experiments have been performed in various environments. Concerning the multi-scale structural similarity index and peak signal-to-noise ratio, the performance of the coding flow is close to that of H.265 in the low bits per pixel area. With an increase in bits per pixel, the saturation bottleneck of the coding flow is at the same level as that of H.264.

A Study on the Invention of Synthetic Visual Analysis Model for Joseon Royal Tombs (조선 왕릉의 경관관리를 위한 통합적 시각구조분석모델 모색방안)

  • Hong, Youn-Soon;Lee, Ai-Ran;Paek, Chong-Chul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.2
    • /
    • pp.49-57
    • /
    • 2015
  • The purpose of this study is to provide the visual landscape modelling on Josun royal tombs and surrounding. The visual landscape of traditional heritage is illustrated by the main view points of analysis. This analysis examines limited view points and cannot reflect a reality of environments. Nowadays various equipments and methodologies are developed for the visual landscape research. This study used new tools for analysis which are Sketch up (3D simulation) and mini helicopter (UAV). With those tools, this research examines not only view points of the analysis but also axis views and disincentive environments as a complex analysis. First of all, the research examined 3D modelling for the virtual simulation and drew coordinates and routes for the UAV operating. Secondly, UAV followed this routes and took linear and continuous views that are real scenes. As a result, it drew 3D simulation could illustrate and control the changing of environments such as the forest density and seasonal variations. Thus, comparing both of them shows efficiently landscape analysis. Thirdly, the study compared virtual and real landscape. Using this 3D modelling, this paper able to elaborate heritage environment and surrounding which omitted by view point analysis. Although this study has limitation practice and exercise on the field, the results and suggestions contribute to the various historic heritage managements and conservations. Moreover, it helps to explain the complex and dimensional landscape analysis.