• Title/Summary/Keyword: Mineralogy

검색결과 470건 처리시간 0.031초

M3 스펙트럼 데이터를 이용한 달 Rima Hadley 지역 연구 (A Study on Rima Hadley Region of the Moon Using Moon Mineralogy Mapper(M3) Spectra)

  • Oh, Youngseok;Jin, Ho;Kim, Khan-Hyuk;Kim, Sungsoo S.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.51.1-51.1
    • /
    • 2015
  • 달의 지형 중 계곡과 같아 보이는 곳을 Rima 또는 Rille 지형이라고 부르며 국제천문연맹(IAU : nternational Astronomical Union)과 미국지질조사국(USGS : United States Geological Survey)에서 관리하는 행성 지명 사전(Gazetteer of Planetary Nomenclature)에 명명된 달의 Rima 지역은 111개에 이른다. 그 중 Rima Hadley 지역은 아폴로 15호가 착륙한 지점으로 잘 알려져 있다. 본 연구에서는 2008년에 발사된 Chandrayaan-1 위성의 적외선 초분광 영상 탑재체인 Moon Mineralogy Mapper(M3) 데이터를 통해 Rima Hadley 지역의 분광학적 특성을 살펴보았다. M3 데이터는 감람석(olivine)이 풍부한 지역에서는 1 um 를 중심으로 흡수선이 나타남을 보이며, (Peter J. Isaacson et al., 2011) 2.8 um 중심의 흡수선을 통해 달의 OH(hydroxyl) 분포에 대해 설명한다. (Carle M. Piters et al., 2009, Georgiana Y. Kramer et al., 2011) 본 연구에서는 Rima Hadley 지역이 1 um 파장 근처에서 강한 흡수선을 가지는 것을 볼 수 있었고, 감람석이 풍부한 지역임을 확인할 수 있었다. 이처럼 감람석이 풍부한 곳은 현무암 지역으로 과거 용암이 분출되어진 곳으로 추측 해 볼 수 있다. 본 연구를 발전시킨다면 Rima Hadley 지역의 생성과 다른 Rima 지형의 형성 과정에 대해 더욱 많은 정보를 얻을 수 있을 것으로 기대된다.

  • PDF

볼음도 자철광상의 초염기성-염기성암과 티타늄자철광석의 광물 및 지구화학적 연구 (Mineralogical and Gechemical Studies of Titaniferous Iron Ores and Ultramafic to Mafic Rocks from the Boreundo Iron Ore Deposits, South Korea)

  • 김규한
    • 자원환경지질
    • /
    • 제33권1호
    • /
    • pp.1-18
    • /
    • 2000
  • Lens shaped and stratiform titanomagnetite orebodies in the Boreumdo iron mine are closely associated with amphibolite which intruded into Precambrian metasediments. Mineralogical and petrochemical analyses of amphilbolite and titanomagnetite ores were carried out in order to interpret the origin of amphilbolite and the genesis of titanomagnetite ore deposits. Amphibolites belong to orthoamphilbolite interms of Niggli value and mineralogy, and are characterized by the occurrence of relict olivine. The amphilbolites responsible for titanomagnetite mineralization have extremely high content of $TiO_2$, ranging from 2.12 to 4.59 wt.% with the average value of 3.43 wt.%. Amphibole minerals in amphibolites are consist mainly of calcic amphiboles such as hornblende, ferroan pargasitic hornblende and tremolite. Most plagioclases belong to andesine ($An_{30-50}$\ulcorner). The metamorphic temperature and geobarometric pressure which are calculated by the calcic amphibole-plagioclase geothermometer and calcic amphilbole geobarometer are estimated to be 537$^{\circ}C$~579$^{\circ}C$(avg. 555$^{\circ}C$) and 2.9~6.6 kbar (avg. 4.5 kbars), respectively. It shows a typical amphibolite facies. Based on the mineral chemistry and petrochemisty of amphibolites and iron ores which are composed mainly of titanomagnetite and ilmenite in the Boreumdo iron mine, the titaniferous oxide melts could be immiscibly separatd from the titaniferous ultrabasic magma. The genesis of the Boreumdo titanomagnetite ore deposits are analogous to the Soyeonpyeongdo and Yonchon iron ore deposits in terms of their mineralogy, mineral chemistry and geologic setting.

  • PDF

영일지역(迎日地域) 제삼기(第三紀) 신광화대(新鑛化帶)의 광물학적(鑛物學的) 특성(特性), 성인(成因) 및 그 잠재성(潛在性)에 관(關)한 연구(硏究) (Mineralogy, Genesis and Potential of a New Tertiary Mineralized Zone in Yeongil Area, Korea)

  • 김수진;노진환
    • 자원환경지질
    • /
    • 제10권2호
    • /
    • pp.53-66
    • /
    • 1977
  • Epithermal Mn-Au-Ag deposits of subvolcanic type in the Yeongil area discovered by one (Soo Jin Kim) of the present authors was studied with emphasis on their mineralogy, genesis and future potential. Mineralization is genetically related to volcanic activities of the Tertiary Period, which have produced porphyritic rhyolite, granite porphyry, felsitic rhyolite and agglomerate. Ore deposits are closely associated with felsitic rhyolite. They occur as breccia-filling, veins, or networks. Mineralization is characterized by rhodochrosite-sulfide ores of breccia-type in the central zone, and sulfide ores of disseminated type in the outer zone. Sulfides consist mainly of pyrite and marcasite, with minor chalcopyrite, sphalerite, argentian tetrahedrite, galena and gold in the central zone, and of pyrite, marcasite and argentian tetrahedrite in the outer zone. Sulfides are generally not easily identified with naked eye because of their very fine-grained nature. Wall rock alteration zones are also developed around ore deposits over the large area. Occurrence of ore deposits and the nature of mineralization indicate that the uppermost portion of ore deposits are now exposed on the surface, and therefore, the main mineralized zones are expected in depth.

  • PDF

중앙태평양 해저산지역 망간각의 광물 및 내부구조 (Mineralogy and Internal Structures of a Ferromanganese Crust from a Seamount, Central Pacific)

  • 강정국
    • 한국해양학회지
    • /
    • 제22권3호
    • /
    • pp.168-178
    • /
    • 1987
  • 태평양지역의 200마일 배타적 경제수역에 주로 분포하는 망간각은 평균 1% 이상의 코발트를 함유하고 있어 해저광물자원으로 높은 개발가치를 가지고 있다. 중앙태평양 한 해저산에서 채취된 망간각의 내부구조와 광물조성에 대한 연구를 통해 망간각 형성된 환경에 따른 성장구조 및 광물성분을 검토하였다. 해양의 높은 산화환경하에서 자생한 수성기원의 버나다이트는 망간각 여러 층내에서 유일한 망 간산화물로 존재하며, 망간각 상`하부에서 버나다이트의 다른 산출 상태는 형성기간 동안 지속적으로 변화한 해양 환경을 암시한다. 망간각의 표층으로부터 약 2cm 깊 이에 존재하는 성장결층과 내부구조의 변화는 마이오세 이후 현세에 이르기까지 고 해양환경에 있었던 일련의 해양변화에서 기인된 것이다.

  • PDF

자연환경 변화와 광물의 역할

  • 김수진
    • 한국암석학회:학술대회논문집
    • /
    • 한국암석학회.한국광물학회 2000년도 공동학술발표회 논문집
    • /
    • pp.3-11
    • /
    • 2000
  • The earth environment consists of four spheres : geosphere, hydrosphere, atmosphere and biosphere. The geosphere consists mostly of minerals. It, however, contains some water and air in its shallow depth. Although hydrosphere and atmosphere consist predominantly of water and air, respectively, both contain some minerals. The biosphere consisting of various organisms is present in the interfaces of geosphere, hydrosphere and atmosphere. The natural environment of the earth is continuously changing by the interaction of four spheres. It suggests that out relevant environmental problems can not be revolved without understanding the natural relationship of these four spheres. Minerals in our environment are very important because they are the main constituent materials of the earth and they control our environment. The roles of minerals in our environment have not been understood even in the scientific society. Thus their roles have been neglected. Review of studies on the environmental mineralogy so far made at our laboratory and others show that minerals control the environment in various ways. Minerals neutralize the acid water as well as acid rain. Minerals in soils and rocks are major neutralizer of the acid rain. Salinization of sea water is attributed to the ionic substitution between minerals and sea water. Some minerals control the humidity of the air. Corals, the products of biomineralization, are the main carbon controller of the air. Minerals also adsorb heavy metals, organic pollutants and radioactive nuclides. Such remarkable functions for controlling the environment come from the mineral-water reaction and biomineralization. All these phenomena are subjects of the environmental mineralogy, a new field of earth science.

  • PDF