• Title/Summary/Keyword: Mineralogy

Search Result 470, Processing Time 0.022 seconds

Sulfide Mineralization in the Huronian Sediments in the Cobalt Area, Ontario, Canada (캐나다 온타리오주 코발트 지역의 휴로니안 퇴적암에 발달한 황화물 광화작용에 관한 연구)

  • Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.139-151
    • /
    • 2006
  • Base metal sulfides occur in the Huronian sedimentary rocks that cover the Archean volcanic rocks in the Cobalt area, Ontario, Canada. They are mostly concentrated in the basal conglomerate which was formed in the pre-Huronian basin structure. Sulfide occurrence can be grouped as massive sulfide clasts in the basal and Coleman conglomerate, disseminated sulfides throughout the sediments, and disseminated sulfides near Ag-Co-Ni-As carbonate veins. Detrital mechanism can explain features such as angularity of sulfide fragments and graded bedding of dissemnated sulfides. Sulfides concentrated near carbonate veins are probably of hydrothermal origin. Nearby strata-bound type massive sulfide ore deposits and mineralized interflow units are the most probable sources for syngenetic sulfides. This is supported by the angularity of sulfide fragments, presence of massive sulfide boulders which are identical in mineralogy and texture to the strata-bound type sulfide deposits in the Archean basement, and a similar composition of sphalerite in the Archean volcanic rocks and Huronian sedimentary rocks. Some sulfide grains, especially in sandstones and argillites, were undergone recrystallization during the intrusion of the Nipissing diabase.

Holocene paleoenvironmental changes in the Lake Khuvsgul, Northern Mongolia (몽골 북부 흡수굴호의 홀로세 동안의 고환경 변화)

  • Orkhonselenge, A.;Kashiwaya, K.;Ochiai, S.;Krivonogov, S.K.;Nakamura, T.
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • The present study has focused on the environmental changes and evidences for sedimentation in the Lake Khuvsgul catchment during the Holocene period, inferred from short core sediment (BO03) from the eastern shore of Borsog Bay, which were analyzed in order to review records of the Holocene climatic evolution and Holocene history in Northern Mongolia. For the purpose of reconstruction of natural phenomenon that occurred in the lake catchment system during the Holocene, physical and chemical properties including HCl-soluble material, biogenic silica, organic matter and grain size distribution of minerals in the core sediments have been analyzed in this study. The vertical variations in composition for these properties show distinctly that five lines of paleoenvironmental evidence occurred in the lake catchment during the Holocene. A modified age model resulting from AMS carbon dating for the BO03 core sediment shows timings of these environmental events at 9.5 Kyr BP, 8.0 Kyr BP, 5.6 Kyr BP and 3.2 Kyr BP, respectively. Paleoenvironmental changes in the Lake Khuvsgul catchment system during the Holocene highlight distinctive features of the hydrological regime and geomorphologic evolution in the lake catchment due to regional landscape and global climatic changes corresponding with the Holocene optimum and thermal optimum. In particular, the change of hydrologic regime based on the sedimentological evidence has been caused by not only overland flow due to melting water, but also base flow due to thick permafrost around Khuvsgul region.

  • PDF

Gold and Silver Mineralization in the Yonghwa Mine (용화광산(龍化鑛山)의 금은광화작용(金銀鑛化作用))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.107-129
    • /
    • 1991
  • The Yonghwa gold-silver deposits are emplaced along $N15^{\circ}{\sim}25^{\circ}W$ trending fissures in middle Cretaceous porphyritic granite or Precambrian Sobaegsan gneiss complex. The results of paragenetic studies suggest that vein filling can be subdivided into four identifiable stages; state I: the main sulfide stage, characterized by base-metal sulfide minerals, iron oxides and minor electrum, stage II: electrum stage, stage III: electrum and silver-bearing sulfosalts stage, stage IV: post ore stage of carbonates and quartz. The ore mineralogy suggests that depositional temperature of the formation of the gold and silver minerals are estimated as 200 to $250^{\circ}C$ and 140 to $180^{\circ}C$, respectively. Sulfur fugacity of the formation of the gold and silver minerals are estimated as $10^{-14.0}$ to $10^{-12.2}$ atm and $10^{-18.5}$ to $10^{-17.2}$ atm, respectively. A consideration of the pressure regime during ore deposition bases on the fluid inclusion evidence of boiling suggests lithostatic pressure of less than 180 bars. This range of pressure indicate that vein system lay at depth of 700m below the surface at the time during mineralization. Salinities of ore-bearing fluids range from 0.4 to 6.9 wt.% equivalent NaCl. The sulfur and carbon isotopic data reveal that these elements were probably derived from a deep-seated source. The ${\delta}^{18}O$ of the hydrothermal fluid was determined from ${\delta}^{18}O$ values of quartz and calcite. Oxygen and hydrogen isotopic studies reveal that meteoric water dominate over ore-bearing fluid.

  • PDF

Mineralogy, Distribution and Origin of Some Pyrophyllite-Dickite-Alunite Deposits in the Haenam Area, Southwest Korea (전남 해남지역 납석, 명반석 및 도석광상의 분포, 광물조성 및 형성기구)

  • Moon, Hi-Soo;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 1992
  • Mineral assemblages, mineral chemistries and stable isotope compositions of altered rocks of the Ogmae, Seongsan, Haenam and Gusi mines near the Haenam volcanic field in the southwestern part of the Korea peninsula were studied. Characteristic hydrothermal alteration zones in these deposits occurring in the Cretaceous volcanics and volcanogenic sediments, acidic tuff, and rhyolite, were outlined. Genetic environment with particular reference to the spatial and temporal relationships for these deposits were considered. The alteration zones defined by a mineral assemblage in the Ogmae and Seongsan deposits can be classified as alunite, pyrophyllite, kaolinite or dickite, quartz, illite or illite/smectite. Alunite was not developed in the Gusi and Haenam deposits. Boundaries between the adjacent zones are always gradational except for vein-type alunite. Alteration zones are superimposed upon each other in some localities. These deposits formed $71.8{\pm}2.8{\sim}76.6{\pm}2.9$ Ma ago, which is the almost same age of later volcanic rocks $79.4{\pm}1.7{\sim}82.8{\pm}1.2$ Ma, the Haenam Group, corresponding to Campanian. It indicates that hydrothermal alteration of these deposits appeared to be related to felsic volcanism in the area. Consideration of the stability between kaolinite, alunite, pyrite and pyrophyllite, and the geothermometry based on the mineral chemistry of illite and chlorite suggests that the maximum formation temperature for alunite and pyrophyllite can be estimated at about $250^{\circ}C$ and $240{\sim}290^{\circ}C$, respectively. It also suggests that these deposits were formed by acidic sulfate solution with high aqueous silica and potassium activity in a shallow depth environment. Compositional variation of alunite also suggests that the physico-chemical conditions fluctulated considerably during alteration processes, indicating shallow depth environment. The Haenam deposit was formed at a relatively greater depth than the others. The sulfur isotope composition of alunite and pyrite indicates that sulfur probably had a magmatic source, and the oxygen isotope composition for kaolinite indicates that the magmatic hydrothermal solution was diluted by circulating meteoric water.

  • PDF

Application of Multivariate Statistics and Geostatistical Techniques to Identify the Distribution Modes of the Co, Ni, As and Au-Ag ore in the Bou Azzer-East Deposits (Central Anti-Atlas Morocco)

  • Souiri, Muhammad;Aissa, Mohamed;Gois, Joaquim;Oulgour, Rachid;Mezougane, Hafid;El Azmi, Mohammed;Moussaid, Azizi
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.363-381
    • /
    • 2020
  • The polymetallic Co, Ni, Cu, As, Au, and Ag deposits of Bou Azzer East are located in the western part of the Bou Azzer inlier in the Central Anti Atlas, Morocco. Six stages of emplacement of the mineralization have been identified. Precious metals (native gold and electrum) are present in all stages of this deposit except the early nickeliferous stage. From the Statistical analysis of the Co, As, Ni, Au, and Ag contents of a set of 501 samples, shows that the Pearson correlation coefficient between As-Co elements (0.966) is the highest followed by that of the Au-Ag couple (0.506). Principal component analysis (PCA) and hierarchical ascending classification (HAC) of the grades show, that Ni is associated with the pair (As-Co) and Cu is rather related to the pair (Au-Ag). The kriging maps show that the highest values of the Co, As and Ni appear in the contact of the serpentinite with other facies, as for those of Au and Ag, in addition to anomalous zones concordant with those of Co, Ni and As, they show anomalies at the extreme South and North of the study area. The development of the anomalous Au and Ag zones is mainly along the N40-50°E and N145°E directions.

Mineralogy of Nodules in the Milyang Pyrophyllite Deposit, Gyeongsangnamdo, South Korea (밀양 납석광상에서 산출되는 단괴의 광물조성)

  • Moon, Hi-Soo;Lee, Kangwon;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.455-464
    • /
    • 1993
  • Some nodules occur in the Milyang pyrophyllite deposit which are hydrothermal alteration products by Late Cretaceous andesitic tuff. These nodules are divided into two types on the basis of mineral assemblages; diaspore and pyrophyllite nodules. The diaspore nodules consist mainly of diaspore, kaolinite, pyrophyllite and pyrite with a small amounts of wavellite and tourmaline. They are light purplish grey in color, ellipsoid in shape and range 1 cm to 15 cm in size. A small or large diffuse band exists in some nodules. The platy coarse-grained diaspore is intergrown with the fine-aggregated kaolinite in the central part of the nodule. It appears that the grain size become fine from center to margin. The pyrophyllite nodules, which have the same shape with diaspore nodules, consist dominantly of pyrophyllite accompanied by small amounts of quartz, kaolinite, svanbergite, wavellite, tourmaline and apatite. Chemical compositions of alteration zones and nodules show that the wall rock alteration involved mainly the removal of large quantities of silica and alkalies and small quantities of Ca, Mg and Fe. The sharp increase in the Al content of the nodules is the result of residual concentration of alumina by the leaching of the mobile components. The pyrophyllite nodules were formed in the fluid saturated with quartz as ${\mu}_{HK_{-1}}$ and ${\mu}_{H_{2}O}$ increase. Under this condition, the pyrophyllite-kaolinite-quartz assemblage was stable. Diaspores formed from pyrophyllites in the fluid undersaturated with quartz as ${\mu}_{H_{2}O}$ increases (decreasing temperature). Under this condition, diaspore-pyrophyllite-kaolinite assemblage become stable. The formation temperature of the nodules on the basis of mineral assemblage is estimated as $275{\sim}340^{\circ}C$.

  • PDF

Trace Elements and REE Characteristics of the Mesozoic Granites in the Wolchul Mt. Area (월출산 지역에 분포하는 중생대 화강암류에 대한 미량원소와 회토류원소의 특성)

  • Lee, Chang-Shin;Kim, Cheong-Bin
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.293-304
    • /
    • 1996
  • The Wolchul Mt. area is composed of a biotite granite and a pink feldspar granite. These granites are distinctly different in terms of their field occurrence, mineralogy, trace element and REE composition, as well as their isotope ages. The biotite granite has higher ferromagnesian elements and lower lithophile trace element abundances than the pink feldspar granite. The biotite granite has high Sr and Ba while the pink feldspar granite has high Rb. On the Rb-Sr-Ba diagram the biotite granite plots as a granodiorite while the pink feldspar granite belongs to a strongly differentiated granite. The ${\Sigma}$ LREE/ ${\Sigma}$ REE for the biotite granite is 0.95 and for the pink feldspar granite it is 0.88. The ratio shows a steep decrese in LREE while HREE is essentially constant. Based on the Eu/Sm, $[La/Lu]_{cN}$ and low Eu(-), the biotite granite has quartz diorite to granodiorite composition while the pink feldspar granite, with a relatively high Eu(-) anomaly, falls into the monzo- to syenogranite classification. The silica vs. trace element diagrams for the two granites indicate that the biotite granite could have formed near to a continental margin or volcanic island setting environment while the pink feldspar granite formed within a continental plate or as result of plate collision. The biotite granite has a U-Pb zircon age of 175 Ma, i.e. Middle Jurassic. The pink feldspar granite is younger, it has a K-Ar orthoclase age $93.6{\pm}1.5$ Ma which is Late Cretaceous age.

  • PDF

The Copper Mineralization of the Keumryeong and Kigu Ore Deposits (금령(金嶺) 및 기구광상(基邱鑛床)의 동광화작용(銅鑛化作用))

  • Park, Hee-In;Seol, Yongkoo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.283-296
    • /
    • 1992
  • The Keumryeong deposits is a low grade copper deposits in which copper minerals form disseminated grains and thin veinlets in felsic volcanics seem to be dacite. Alteration of the volcanics consists mainly pervasive propylitization and silicification. Potassic alteration characterized by biotite developed locally adjacent to southwestern contact of granodiorite body. Principal sulfide minerals in altered zone are mainly pyrite and lesser chalcopyrite. Chalcopyrite content in potassic zone is relatively higher than that of surrounding propylitized zone. Pyrite and chalcopyrite accompanies magnetite, molybdenite, sphalerite, pyrrhotite, arsenopyrite, pentlandite, marcasite, hematite, ilmenite, rutile, bismuthinite and native Bi as disseminations, veinlets and knots. Granodiorite body is propylitized and contains veinlets of pyrite, chalcopyrite and molybdenite. Fluid inclusions in sulfide-bearing quartz veinlets and quartz grains of felsic volcanics and granodiorite in altered zone consist of liquid-rich, vapor-rich, $CO_2-bearing$ and halite-bearing inclusions. These four types of inclusion intimately associated on a microscopic scale and indicate condensing or boiling of ore fluid during mineralization. Homogenization temperature of coexisting fluid inclusions are mostly in the range of 350 to $450^{\circ}C$. High salinity fluid contains 28.6 to 48.4 weight percent NaCI equivalent and moderate salinity fluid cotains 0.5 to 12.5 weight percent NaCl equivalent. Pressure estimated from $CO_2$ mole fraction of $CO_2-bearing$ inclusion range 160 to 375 bars. The Kigu copper deposits is a fissure filling copper vein developed 500 m south from the Keumryong deposits. Mineralogy and fluid inclusion data of the Kigu deposits are similar to that of the Keumryeong deposits. Homogenization temperature of fluid inclusions from the Kigu deposits are reasonable agreement with temperature estimated from sulfidation curve of cubanite-chalcopyrite-pyrite-pyrrhotite and pyrite-pyrrhotite mineral assemblages. Not only mineral occurrence and wall rock alteration in the Keumryeong deposits but also fluid inclusion data such as temperature, salinity, pressure and boiling evidences are similar to those of porphyry copper deposits.

  • PDF

Distribution of Clay Minerals in Soils on the Northern Drainage Basin of the Nakdong River (낙동강 북부 배수유역의 토양 점토광물 분포)

  • Lee, Bong-Ho;Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.349-354
    • /
    • 2008
  • Semiquantitative mineralogical analysis of clays in soils was performed to understand the distribution of clay minerals in relation to bedrock lithology on the northern basin of the Nakdong River. The soils developed on the granitic bedrocks have high contents of kaolinite and smectite. mite was the major clay mineral in the soils from sedimentary bedrocks, with minor kaolinite, smectite, and intergrade (interstratified chlorite-smectite or hydroxy-interlayed vermiculite) clay minerals. Illite and kaolinite contents of the soils from metamorphic and volcanic bedrocks fall between those of the soils from the granitic bedrocks and those of the soils from the sedimentary bedrocks. The clay mineralogy of the soils depends on the compositions of bedrock minerals and their susceptibility to chemical weathering. The weathering of plagioclase resulted in the high kaolinite content of the soils derived from granitic bedrocks, while the soils derived from sedimentary bedrocks are abundant in residual illite.

Characterization of Clastic and Organic Sediments Near Dokdo, Korea (독도 인근 해저퇴적물과 유기 퇴적물 분포 특성)

  • Jun, Chang Pyo;Kim, Chang Hwan;Lee, Seong-Joo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.65-80
    • /
    • 2013
  • Sediment transport mechanism and distribution of organic sediments are elucidated by the study of particle size, mineralogy, organic matters and microfossils of the surface samples collected from seafloor adjacent Dokdo island. Shallow marine sediments are dominated by coarse- grained sediments including gravel and sand, and their sedimentation has mainly been controlled by traction. While the samples collected from oceanic zone are characterized by high contents of fine- grained sediments such as silt and mud in bulk sediments, and the changes of mineral compositions including clay minerals and feldspar, and the fine sediments have been deposited mainly by suspension. The change of organic sedimentary communities is detected between neritic and oceanic zone. Although marine organic matter is predominant in neritic zone, terrestrial organic matter is monopolized according to increasing water depth. This trend is associated with grain size of sediments. The results also suggest that high pollen concentrations in whole organic matters may played an important role in excessive organic carbon in sediment.