• Title/Summary/Keyword: Mineralogical analysis

Search Result 399, Processing Time 0.029 seconds

Kinetics and Isotherm Analysis of Valuable Metal Ion Adsorption by Zeolite Synthesized from Coal Fly Ash (석탄비산재로부터 합성한 제올라이트를 이용한 유가금속이온의 흡착속도 및 등온 해석)

  • Ahn, Kab-Hwan;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of $2{\theta}$ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.

Mechanical Anisotropy Dependent on the Rock Fabric in the Pocheon Granite and its Relationship With Microcracks (포천화강암내에 발달한 결의 역학적 이방성과 미세균열의 상관성)

  • 장보안;오선환
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.191-203
    • /
    • 2001
  • We investigate mechanical anisotropy dependent of rock fabric and its relationship with microcracks in the Pocheon Granite. Uniaxial compressive strengths range from 177MPa to 212MPa and the elastic constants are 48GPa-62GPa. The tensile strengths are 6.9MPa~8.5MPa and ultrasonic wave velocities range between 3,200m/sec and 3,700m/sec, indicating that mechanical anisotropy is strongly dependent of rock fabric. The minimum anisotropy ratio is 14% and the maximum is 24%, depend on the mechanical properties. The preferred orientations of microcracks are closely related with the directions of rock fabric. The preferred orientations of microcracks in feldspar are governed by the direction of mineralogical axis and are different from the directions of rock fabric. However, microcracks in quartz grains are very long and parallel to the directions of rock fabric, indicating that directions of rock fabric may be governed by the preferred orientations of microcracks in quartz grains. The preferred orientations of microcracks measured by differential strain analysis and microscopic observation are slightly different. That may be caused by different methodology. Lengths and numbers of microcrack are measured by microscopic observation. However, differential strain analysis measures the widths of microcracks.

  • PDF

Evaluation of Hydrogeologic Seal Capacity of Mudstone in the Yeongil Group, Pohang Basin, Korea: Focusing on Mercury Intrusion Capillary Pressure Analysis (포항분지 영일층군 이암층의 수리지질학적 차폐능 평가: 수은 모세관 압입 시험의 결과 분석을 중심으로)

  • Kim, Seon-Ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • Geological CO2 sequestration is a global warming response technology to limit atmospheric emissions by injecting CO2 captured on a large scale into deep geological formations. The presented results concern mineralogical and hydrogeological investigations (FE-SEM, XRD, XRF, and MICP) of mudstone samples from drilling cores of the Pohang basin, which is the research area for the first demonstration-scale CO2 storage project in Korea. They aim to identify the mineral properties of the mudstone constituting the caprock and to quantitatively evaluate the hydrogeologic sealing capacity that directly affects the stability and reliability of geological CO2 storage. Mineralogical analysis showed that the mudstone samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, clay minerals, etc. Mercury intrusion capillary pressure analysis also showed that the samples generally had uniform particle configurations and pore distribution and there was no distinct correlation between the estimated porosity and air permeability. The allowable CO2 column heights based on the estimated pore-entry pressures and breakthrough pressures were found to be significantly higher than the thickness of the targeting CO2 injection layer. These results showed that the mudstone layers in the Yeongil group, Pohang basin, Korea have sufficient sealing capacity to suppress the leakage of CO2 injected during the demonstration-scale CO2 storage project. It should be noticed, however, that the applicability of results and analyses in this study is limited by the lack of available samples. For rigorous assessment of the sealing efficiency for geological CO2 storage operations, significant efforts on collection and multi-aspect evaluation for core samples over entire caprock formations should be accompanied.

A Study of Mineral Quantification on Clay-Rich Rocks (점토질 암석의 광물정량 분석법 연구)

  • Byeong-Kook, Son;Gi-O, An
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A quantitative phase analysis method of X-ray powder diffraction was studied to determine the mineral content of clay-rich rocks practically as well as effectively. For quantitative X-ray powder diffraction analysis of the clay-rich rocks, it is necessary to prepare whole-rock powder samples with a random orientation by side mounting method. In addition, for the identification of the clay minerals in the rock, it is required to prepare an oriented mount specimen with a clay particle size of 2 ㎛ or less, ethylene glycol treatment, and heat treatment. RIR (reference intensity ratio) and Rietveld method were used for the quantitative analysis of the clay-rich rocks. It was possible to obtain the total clay and the non-clay minerals contents from the whole-rock X-ray diffraction profiles using the RIR values. In addition, it was possible to calculate the relative content of each clay mineral from the oriented X-ray diffraction profiles of the clay particle size and assign it to the total clay. In the Rietveld method of whole-rock X-ray diffraction, effective quantitative values were obtained from the Rietveld diffraction patterns excluded the region of less than 10 degrees (2θ). Similar quantitative values were shown in not only the RIR but the Rietveld methods. Therefore, the analysis results indicate a possibility of a routine quantitative analysis of clay-rich rocks in the laboratory. However, quantitative analysis of clay minerals is still a challenge because there are numerous varieties of clay minerals with different chemical and structural characteristics.

Illite, Reviewed on the Chemical Compositions - The Mixed Phase among Muscovite, Pyrophyllite and Chlorite: EPMA Quantitative Analysis of Shale from the Jigunsan Formation at Seokgaejae in Samchuk-City, Gangwon-do (화학조성으로 다시 보는 일라이트-백운모, 파이로필라이트 및 녹니석의 혼합상: 강원도 삼척시 석개재에 분포하는 직운산층 셰일에 대한 EPMA 정량분석)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.143-153
    • /
    • 2012
  • Mica-type minerals (illites) in the shales of the Jigunsan formation at Seokgaejae in Samchuk-City, Gangwon-do are studied using electron probe micro analysis (EPMA). The average chemical formula of the mica-type mineral obtained from the quantitative analysis is $(K_{1.17}Na_{0.04}Ca_{0.01})(Al_{2.80}Mg_{1.17}Fe_{0.78})(Si_{6.34}Al_{1.66})O_{20}(OH)_4$, which shows a chemical formula within the range of illite. These illites so called can be considered as mixed-phases among muscovite, pyrophyllite and chlorite due to the low contents of interlayer cations and high Mg, Fe. The formula of illite is separated into those three minerals and the method for the separation is newly formulated and proposed in this study. From the formula of illite, the content of muscovite is estimated from K (Na and Ca included), the content of chlorite by Mg+Fe, and the rest remains as pyrophyllite. The chemical formula of muscovite can be calculated by subtracting the compositions of pyrophyllite and chlorite from the analyzed composition of illite using an ideal formula for pyrophyllite and analyzed average formula for chlorite. The calculated formula of muscovite is supposed to be stoichiometric in principle. The result of the separation of analyzed illite is 61% muscovite, 27.3% chlorite and 11.7% pyrophyllite and the calculated formula of muscovite after separation is $(K,Na,Ca)_{2.00}Al_{3.69}(Si_{6.75}Al_{1.25})O_{20}(OH)_4$. The calculated formula of muscovite slightly low in Al content can be considered to be reasonable in general when the low content of Al in the rock and the uncertainties of chlorite compositions used in the calculation are counted. This supports that the method of separation proposed in this study is also applicable.

SWIR Application for the Identification of High-Grade Limestones from the Upper Pungchon Formation (풍촌층 상부 층준의 고품위 석회석 동정을 위한 SWIR 적용)

  • Kim, Yong-Hwi;Kim, Gyoo Bo;Choi, Seon-Gyu;Kim, Chang Seong
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.335-347
    • /
    • 2016
  • The mineralogical and geochemical characteristics of diverse carbonate rocks can be investigated by using VNIRSWIR(visible near infrared-short wavelength infrared) spectroscopic analysis as a rapid, nondestructive, and inexpensive tool. Comparing whole rock analysis to VNIR-SWIR spectroscopic analysis, the analytical method was investigated to estimate CaO contents, mud impurity, and whiteness of carbonate rocks involved in high-grade limestones in the field. We classify typical carbonate rocks in the upper Pungchon Formation in high-grade limestone mine area such as the Gangweon, Chungmu and Baegun mine in the Jeongseon area. The results show that powdered specimen has much higher reflectance than cutted specimen between the same sample. Whiteness is highly correlated with reflectance(0.99) for powdered specimen. The absorption of mineral mixtures shifts in position as a result of the mass ratio of calcite and dolomite in the Chungmu mine by changing to 75:25, 50:50, and 25:75. The absorption peak position in carbonate mixtures is highly correlated with CaO contents(0.98~0.99). Based on color system, the carbonate rocks are grouped into (milky) white, light grey, light brown, grey, and dark grey. The absorption peak position shifts from 2340 nm to 2320 nm as CaO contents decrease from 55.86 wt.% to 29.71 wt.%. We confirmed that absorption peak position shifts depending on the amount of Ca, which is bonded to $CO{_3}^{-2}$, Mg, and Fe contents replacing Ca. This result suggests that CaO contents in carbonate rocks can be considered to quantitative analysis in the field by spectroscopic analysis.

Studies on Mineralogical and Geochemical Characterization of Tailings and Leachate Water in Yonghwa Mine, Yeongyang Area (영양 용화광산의 광미 및 침출수의 광물학적 및 지화학적 특성 연구)

  • Kang, Han;Kim, Young-Hun;Jang, Yun-Deug;Kim, Jeong-Jin
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.265-276
    • /
    • 2012
  • Current study includes the analysis of mine tailings and leachate water and prediction of species originated from the tailings. The variation of contaminants were measured upon the distance from the tailings to the nearby stream. The ions concentration was highest at the tailings and pit mouth and it becomes lower as it goes far away from the origin. This is the reason that the leachate was diluted with the uncontaminated stream water. The tailings were mainly classified into reddish one and yellow one. The main mineral of reddish tailings were quarts, illite, plumbojarosite and a small amount of sphalerite. The main mineral of yellow tailings were muscovite, quarts, plumbojarosite, and a small amount of chalcopyrite and sphalerite. Pb and Zn were found in the leachate in high concentration and become the major contaminants. These come from the dissolution of plumbojarosite and sphalerite contained in the mine tailings.

Leaching of Arsenic in Soils Amended with Crushed Arsenopyrite Rock

  • Lee, Kyosuk;Shim, Hoyoung;Lee, Dongsung;Yang, Jae E.;Chung, Dougyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.113-119
    • /
    • 2014
  • Arsenic and its compounds which is one of the most toxic elements that can be found naturally on earth in small concentrations are used in the production of pesticides, herbicides, and insecticides. Most arsenic that cannot be mobilized easily when it is immobile is also found in conjunction with sulfur in minerals such as arsenopyrite (AsFeS), realgar, orpiment and enargite. In this investigation we observed the leaching of arsenic in soils amended with several levels of gravel size of arsenopyrite collected from a road construction site. Soil and gravel size of arsenopyrite were characterized by chemical and mineralogical analyses. Results of XRF analysis of arsenopyrite indicated that the proportion of arsenate was 0.075% (wt $wt^{-1}$) while the maximum amount of arsenic in soil samples was 251.3 mg $kg^{-1}$. Cumulative amounts of effluent collected from the bottom of the soil column for different mixing rate of the gravel were gradually increased where proportion of the gravel mixed was greater than 70% whereas the effluent was stabilized to the maximum after approximately 45 pore volumes of effluent or greater were collected. The arsenic in the effluent was recovered from the soil columns in which the proportion of arsenopyrite gravel was 60% or greater. The total amount of arsenic recovered as effluent was increased with increasing proportion of gravel in a soil, indicating that the arsenic in the effluent was closely related with gravel fraction of arsenopyrite.

The Mineralogy and Geochemistry of the Uppermost Sediments of the Lake Hovsgol, North Mongolia : It's Implication to the Paleoenvironmental Changes

  • Tumurhuu, D.;Narantsetseg, Ts.;Ouynchimeg, Ts.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.3-3
    • /
    • 2004
  • One short core with length of 146cm(HB-107, at coordinates of $N51^{\circ}$11'37.5";$E100^{\circ}$24'45.6", from 229m water depth was subject of the present study. The sub-samples of the core were analyzed for the water contents (WC%), biogenic silica, identification of the main phases, grain size distribution, geochemistry and some physical properties of sediment(Wet density and Magnetic susceptibility) with aims of recording palaeo-environmental changes in Northem Mongolia. The evaluation of the geochemical and mineralogical proxies on palaeo-climated and palaeo-environmental changes are based on comparison to the behvior of biogenic silica through core, as later one had been showed itself, as good indicator of the climate and environmental fluctuation. Age model of the investigating core based on previously C 14 dated core HB105 taken from the central part of the Hobsgol Lake and the result had been published elsewhere. The core consists of two litological varieties : upper diatomaceous silt, lower clay. According to the age model the upper diatomaceous silt formed during the Holocene, lower caly-during the late Pleistocene glacial period. The geochemistry and phase identification analysis on the core samples are resulted in determining main minerals that form the bottom sediments and their geochemistry. The main include quartz, felspar, muscovite, clinochlore, amphibole and carbonate phase(dolomite and calcite). Through the core not only occur the relative quantitative changes of the main phases, but also happen that the carbonate phase completely disappear in diatomaceous silt. This is believed to be related to the lake water salinity changes, which occurred during the trassition period from Pleistocene glacial-to the Holocene interglacial. These abrupt changes of the mineralogy have been clearly traced in geochemistry of sediments, specially in calcium concentration, which is high in lower clay and low in upper diatomaceous silt. That means, geochemistry and mineralogy of the bottom sediments can be used as proxy data on palaeo-climate and palaeo-environmental changes.

  • PDF

Characteristics of W-Mo Mineralization in Dulaankhaikhan area, Mongolia (몽골 중부 둘란하이한 지역의 W-Mo 부존 특성)

  • Lee, Bum Han;Kim, In Joon;Heo, Chul-Ho
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.22-31
    • /
    • 2013
  • KIGAM and MRAM (Mineral Resources Authority of Mongolia) performed joint researches on geological survey of Dulaankhaikhan W-Mo occurrences areas in southeastern part of Khangai region. XRD results of tungsten containing quartz vein sample show that tungsten minerals are wolframite, hubnerite and ferberiteore. $WO_3$ grade of samples obtained in Silurian Khotont formation is 0.11-4.43% and that of samples obtained in Permian Delgerkhan complex is 137-3844 ppm. Average total $R_2O_3$ of samples obtained in survey area is 473 ppm which is 2.5 times larger than that of Earth's crust. The highest total $R_2O_3$ is 1326 ppm. Factor analysis results show that two areas of high tungsten contents have similar correlations with tungsten, and therefore we conclude that these two areas have the similar origin of mineralization.

  • PDF