• Title/Summary/Keyword: Mineralization pathways

Search Result 15, Processing Time 0.018 seconds

SPA0355 prevents ovariectomy-induced bone loss in mice

  • Kim, Sang Hoon;Zhang, Zhongkai;Moon, Young Jae;Park, Il Woon;Cho, Yong Gon;Jeon, Raok;Park, Byung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • Estrogen withdrawal in post-menopausal women leads to overactivation of osteoclasts, which contributes to the development of osteoporosis. Inflammatory cytokines are known as one of mechanisms of osteoclast activation after estrogen deficiency. SPA0355 is a thiourea derivative that has been investigated for its antioxidant and anti-inflammatory activities. However, its efficacy in bone resorption has not been previously investigated. The aim of this study was to investigate the impact of SPA0355 on the development of osteoporosis and to explore its mode of action. In vitro experiments showed that SPA0355 inhibited receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages. This effect appears to be independent of estrogen receptor activation as ICI 180,782 failed to abrogate its effects on osteoclasts. Further signaling studies revealed that SPA0355 suppressed activation of the MAPKs, Akt, and $NF-{\kappa}B$ pathways. SPA0355 also increased osteoblastic differentiation, as evidenced by its effects on alkaline phosphatase activity and mineralization nodule formation. Intraperitoneal administration of SPA0355 to ovariectomized mice prevented bone loss, as verified by three-dimensional images and bone morphometric parameters derived from ${\mu}CT$ analysis. Noticeably, SPA0355 did not show hepatotoxicity and nephrotoxicity and also had little effect on hematological parameters. Taken together, the results indicate that SPA0355 may protect against bone loss in ovariectomized mice by stimulation of osteoblast differentiation and by inhibition of osteoclast resorption. Therefore, SPA0355 is a safe and potential candidate for management of postmenopausal osteoporosis.

Mineral composition and phosphorus digestibility in feed phosphates fed to pigs and poultry

  • Su A, Lee;Diego A., Lopez;Hans H., Stein
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • Phosphorus (P) is a macro mineral needed for bone mineralization and cell membrane structure and P is also involved in several fundamental pathways of metabolism in the body. Because of the low concentration and digestibility of P in plant ingredients that are the main components of diets for poultry and pigs, feed phosphates are usually included in diets in addition to the P contributed by plant ingredients. The most widely used feed phosphates in poultry and swine diets are dicalcium phosphate (DCP) and monocalcium phosphate (MCP), but tricalcium phosphate (TCP), monosodium phosphate (MSP), and magnesium phosphate (MgP) may be used as well. Because feed phosphates are mostly produced from rock phosphate, feed phosphates have impurities that contain minerals other than P. Concentrations of P in feed phosphates range from 14.8% (MgP) to 25.7% (MSP). The standardized total tract digestibility (STTD) of P in pigs ranges from 71% (TCP) to 95% (MSP). The STTD of Ca and the standardized ileal digestibility (SID) of P and Ca in feed phosphates fed to pigs and poultry have been determined only in a few experiments. Available data indicate that the STTD of Ca and SID of P in MCP are greater than in DCP in both poultry and pigs, but the SID of Ca is similar between DCP and MCP fed to broilers. Information on mineral concentrations and digestibility values in feed phosphates is needed in diet formulation for pigs and poultry, but if diets are formulated to contain equal concentrations of digestible P and Ca, it is unlikely that animal performance will be impacted by the source of feed phosphates used in the diet.

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

  • Saroj K Shrestha;Se-Woong Kim;Yunjo Soh
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.69.1-69.11
    • /
    • 2023
  • Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runtrelated transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

Study on histological features and Bmp4 expression pattern during tooth formation and replacement in Xenopus laevis

  • Young-Hoon Lee;Renming Guo;Yibo Li;Byung Keon Park
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.48-52
    • /
    • 2024
  • This study explores the histological features and Bmp4 expression patterns in the replaced tooth germ of Xenopus laevis. Tooth germ formation starts from the dental placode through epithelial-mesenchymal interactions, involving various signaling pathways such as Fgf, Shh, Bmp, and Wnt. In mice, Bmp4 expression in the dental placode inhibits Pax9 expression in the dental mesenchyme. Although absent in the presumptive dental lamina of birds and toothless mammals, Bmp4 remains conserved in reptiles and fish owing to gene duplication. However, its expression in amphibian tooth germs is poorly understood. Three-month-old X. laevis were employed in this study. Initially, samples underwent paraffin embedding and were sectioned into 5 or 12 ㎛ ribbons for H&E staining and in situ hybridization, respectively. Results revealed teeth appearing in two maxillary rows: the labial side, with prefunctional and functional teeth, and the lingual side, with replaced tooth germs behind functional teeth. Enameloid was observed between the inner dental epithelium and dental mesenchyme at the cap or early bell stages, whereas enamel and dentin formed during the late bell or mineralization stages from the replaced tooth germ. Bmp4 expression was evident in the inner dental epithelium (ameloblasts), dental papilla (odontoblasts), stellate reticulum, and Hertwig's epithelial root sheath. Overall, these findings highlight the conservation of Bmp4 expression in X. laevis tooth development.

Rates and Pathways of Anaerobic Mineralization of Organic Matter at Highly Stagnant Freshwater Wetland and Its Comparison to Frequently Flushed Coastal Wetland (정체된 시화 인공습지와 해수유통이 활발한 강화 갯벌에서의 혐기성 유기물 분해능 및 분해경로 비교)

  • Kim, Sung-Han;Mok, Jin Sook;Jeong, Jeong Ho;Chang, Yoon Young;Choi, Kwang Soon;Hyun, Jung-Ho
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • The objectives of this study are: (1) to compare the rates and pathways of organic matter minerlaization at stagnant freshwater wetland in Shiwha to highly irrigated coastal wetland in Ganghwa; and (2) to discuss the significance of irrigation into the sediment in controlling the organic carbon oxidation in Shiwha wetland. Concentrations of $CO_2$, $NH_4{^+}$ and $H_2S$ in the pore water of the Shiwha wetland were 3 times, 30 times, and 3 times higher than that in the pore water of the Ganghwa wetland, respectively. The ratio of Fe(III) to total reduced sulfur at the Ganghwa wetland was 12 times higher than at the Shiwha wetland. The results indicated that the Ganghwa wetland with frequent tidal inundation were relatively oxidized than highly stagnant Shiwha wetland. Rates of organic matter oxidation at the Ganghwa wetland ($0.039mM\;C\;h{-1}$) was 390 times higher than that at the Shiwha wetland ($0.0001mM\;C\;h{-1}$). Rates of sulfate reduction at the Shiwha wetland ($314{\sim}580nmol\;cm^{-3}\;d{-1}$) were comparable to the sulfate reduction at Ganghwa wetland ($2{\sim}769nmol\;cm^{-3}\; d{-1}$), whereas Fe(III) reduction rates were 1.7 times higher at the Ganghwa wetland ($0.1368{\mu}mol\;cm^{-3}\;d{-1}$) than at the Shiwha wetland ($0.087{\mu}mol\;cm^{-3}\;d{-1}$). The results implied that the water flow system of the Shiwha wetland was too stagnant to flush out the reduced pore water from the sediment, and thus anaerobic microbial respiration was limited by the availability of electron acceptors.

  • PDF