• Title/Summary/Keyword: Mineral supply

Search Result 245, Processing Time 0.031 seconds

Mineral Economic Index and Comprehensive Demand Prediction for Strategic Minerals: Copper, Zinc, Lead, and Nickel (자원경제지표와 주요 금속의 중.장기 수요 예측 -아연, 납, 구리, 니켈을 중심으로-)

  • Choi, Soen-Gyu;Kim, Chang-Seong;Ko, Eun-Mi;Kim, Seong-Yong;Jo, Ho-Young
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.345-357
    • /
    • 2008
  • Korea has been one of the top ranked countries in the per capita and total consumption of Cu, Zn, Pb, and Ni since economic development based on manufacturing industries. The current instability of mineral demand and supply in Korea is likely to continue or exacerbate in accordance with economic growth in developing countries such as BRICs. Korea needs to increase the self-development portion of strategic mineral resources including Cu, Zn, Pb, and Ni. Our analysis of mineral demand and supply data predicts a long-run instability of supply and demand for main minerals used in the Korean manufacturing industries, and suggests a long range government policy for stable supply of core mineral resources.

Change of Microbiological Quality according to Various Storage Conditions in the Drinking Process of Bottled Mineral Water (먹는 샘물의 개봉 후 음용과정에서의 보관 조건에 따른 미생물학적 수질 변화)

  • Bae, Kyung-Seon;Kim, Jihye;Jang, JunHyeong;Kim, Jeong Myeong;Lee, Wonseok;Chung, Hyen-Mi;Park, Sangjung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.499-508
    • /
    • 2017
  • Objective: This study was conducted to investigate changes in microbiological quality according to various storage conditions in the drinking process of bottled mineral water. Methods: Heterotrophic plate counts ($21^{\circ}C$ and $36^{\circ}C$) and pathogenic indicators (total coliforms, fecal Streptococcus, Pseudomonas aeruginosa, Clostridium perfringens, Salmonella, and Shigella) were analyzed in commercial bottled mineral water stored under different conditions ($4^{\circ}C$, $20-25^{\circ}C$, $36^{\circ}C$) after injecting saliva. The heterotrophic plate counts were analyzed twice per day for the first week and once per day for the three weeks after. Pathogenic indicators were analyzed at the beginning and end (initial and final). Results: The results of the microbiological quality of the bottled mineral water in contact with saliva showed that heterotrophic plate counts ($21^{\circ}C$) had a tendency to be sustained or decrease slightly after 10 days. Heterotrophic plate counts ($36^{\circ}C$) had a high population in the initial samples and gradually decreased at $4^{\circ}C$ storage, but it remained constantly high in storage at $20-25^{\circ}C$ and $36^{\circ}C$. In the general drinking condition, the population was slightly higher than the control, but the overall trend was similar. Conclusions: As a result of the microbiological quality of mineral bottled water in contact with saliva during the process of drinking, heterotrophic plate counts ($21^{\circ}C$ and $36^{\circ}C$) showed a high population compared to the control, which was only opened and not in contact with saliva. In some samples, pathogenic indicators were also detected. Therefore, it is desirable to consume bottled mineral water as soon as possible after opening.

The Study on the Ion Water Characteristics of Raw Water in the Domestic Natural Mineral Water (국내 유통 중인 먹는샘물 원수의 이온류 수질 특성에 관한 연구)

  • Lee, Leenae;Ahn, Kyunghee;Min, Byungdae;Yang, Mihee;Choi, Incheol;Chung, Hyenmi;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.442-449
    • /
    • 2016
  • The goal of this study is to provide basic data to establish a foundation for the provision of safe drinkable water. The raw water of natural mineral water was analyzed to determine the quantities of anions (F-, Cl-, NO3-N-, and SO42- ) and cations (Ca2+, K+, Mg2+, and Na+) during the former and latter half of 2016. Analysis of the current quality of the raw water of natural mineral water among domestic manufacturers showed average anions contents of 0.46mg/L of fluorine, 8mg/L of chlorine ion, 1.5mg/L of nitrate nitrogen, and 12mg/L of sulfate ion. While the fluorine content was greater than the water quality criterion of 2.0mg/L at four points, the fluorine level was overall stable. The average cations contents included 21.3mg/L of calcium, 1.0mg/L of potassium, 3.4mg/L of magnesium, and 9.6mg/L of sodium. The chemical characteristics were compared among the major ions, and the results are presented in a piper diagram. The content ratio of cations was in the order of Ca2+> Na+>Mg2+>K+, whereas that of anions was in the order of SO42->Cl->NO3-N->F-. While the cations were slightly scattered, the anions were generally concentrated except for at a few points. The Ca-Na-HCO3 type was dominant overall in water sources from diorite, gneiss, and granite, while the Na-Mg-Ca-HCO3-Cl type was dominant in basalt sources. Mineral water manufacturers source their water under various conditions, including in-hole casing, excavation depth, and contact state of bedrock; even within the same rocky area, some differences in the water quality type can occur. When the depth of the water source was taken into account, the mean anions contents of F-, Cl-, NO3-N-, and SO42- were similar, with no significant differences according to depth. Of the cations, K+ and Na+ showed no significant differences across all the tubular wells, whereas Ca2+ and Mg2+ decreased in content with depth.

Resource Demand/Supply and Price Forecasting -A Case of Nickel- (자원 수급 및 가격 예측 -니켈 사례를 중심으로-)

  • Jung, Jae-Heon
    • Korean System Dynamics Review
    • /
    • v.9 no.1
    • /
    • pp.125-141
    • /
    • 2008
  • It is very difficult to predict future demand/supply, price for resources with acceptable accuracy using regression analysis. We try to use system dynamics to forecast the demand/supply and price for nickel. Nickel is very expensive mineral resource used for stainless production or other industrial production like battery, alloy making. Recent nickel price trend showed non-linear pattern and we anticipated the system dynamic method will catch this non-linear pattern better than the regression analysis. Our model has been calibrated for the past 6 year quarterly data (2002-2007) and tested for next 5 year quarterly data(2008-2012). The results were acceptable and showed higher accuracy than the results obtained from the regression analysis. And we ran the simulations for scenarios made by possible future changes in demand or supply related variables. This simulations implied some meaningful price change patterns.

  • PDF

Mineral Uptake and Soluble Carbohydrates of Tomato Plants as Affected by Air Temperatures and Mineral Treatment Levels

  • Sung, Jwakyung;Yun, Hejin;Cho, Minji;Lee, Yejin;Chun, Hyenchung;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.305-311
    • /
    • 2015
  • Both low and high temperatures affect plant growth and development at whole plant level, tissue and even cell level through a variety of metabolic changes. Temperature stress is one of frequently occurring problems in greenhouse crops in summer and winter seasons due to the wide-spread year-round cultivation. In the present study, we investigated the extent of the inhibition of growth, macro-element uptake and soluble carbohydrate production, and the effect of extra-supply of minerals as a means of the recovery from temperature damage. Tomato plants were grown five different growth temperatures (15/8, 20/13, 28/21, 33/23 and $36/26^{\circ}C$), and extra-supply of minerals was composed of 1.5- and 2.0-fold stronger than the standard nutrition (1/2 strength of Hoagland's solution). Temperature stress significantly adversely affected tomato growth and mineral uptake, whereas soluble carbohydrate accumulation represented temperature-dependent response, more accumulation at low temperature and more consumption at high temperature. The soluble sugars in leaves and stems were mostly declined with the supply of extra-minerals at low and optimal temperatures, whereas remained unchanged at high temperature. The starch levels also remained unchanged or slightly decreased.

A Preliminary Assessment of Groundwater Chemistry for Agricultural Water Supply in the Mangyeong-Dongjin Watershed (만경-동진강 유역 지하수의 화학적 특성에 대한 농업용수 측면의 예비적 평가)

  • Choi, Hanna;Kwon, Hong-Il;Yoon, Yoon-Yeol;Kim, Yongcheol;Koh, Dong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2021
  • We investigated hydrochemical and stable isotope characteristics of groundwater in a large agricultural plain, the Honam plain, to evaluate the adequacy of agricultural water supply. For preliminary assessment for the area, we collected 23 groundwater samples from domestic wells and conducted hydrochemical and water stable isotope analysis. Groundwater in the study area is mainly Ca-HCO3 type resulting from water-rock interactions. Stable oxygen and hydrogen isotopic compositions indicated that recharge water is derived from precipitation while some sampling sites had evaporation signatures. Irrigation water quality using sodium absorption ratio and salinity hazard showed most of the groundwater samples were found to be suitable for irrigation. The groundwater in the southwestern part of the study area was affected by both seawater intrusion and agricultural activities, indicating a higher possibility of groundwater contamination near the coastal areas. Elevated concentrations of nitrate and phosphate ions in the groundwater are considered to be influenced by anthropogenic activities such as fertilizer application. It is expected that this study would be able to provide preliminary information on groundwater quality for agricultural water supply in the Mangyeong-Dongjin watershed.

A Review on the Demand and Supply of Major Non-Ferrous Metals and their Recycling of Scraps during 2014-2018 in Korea (국내 범용 비철금속의 2014-2018 년간 수요 공급과 스크랩 리싸이클링 현황 조사)

  • Park, Hyungkyu;Kang, Jungshin;Lee, Taehyuk;Lee, Jinyoung;Kim, Youngmin
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.68-76
    • /
    • 2019
  • It is very necessary for the metal recycling industries and the researchers to understand the current status of demand and supply of non-ferrous metals and their scraps. Domestic demand and supply of non-ferrous metals and their scraps have been surveyed and reported on the journal of the Korean Institute of Resources Recycling since ten years before. However, it was confined to six major non-ferrous metals such as copper, aluminum, zinc, lead, nickel and magnesium because there are so many kind of non-ferrous metals. In this article also, demand and supply of these non-ferrous metals in addition tin during recent five years (2014 ~ 2018) in Korean markets were reviewed, and their recycling ratio of scraps were briefly estimated. The statistical data were mainly cited from the data issued by Korea Customs Service (KCS) and Korea Non-Ferrous Metal Association, and some fragmental published review articles from magazines and other technical reports.

Mineral Components of Water Supply Plants and Spring Waters in Northern Gyeonggi Area (경기북부지역 정수장 및 약수터의 미네랄 성분 분포 연구)

  • Song, Hee-Il;Lim, Han-Su;Park, Gyoung-Su;Park, Hyun-Goo;Lee, Hyun-Jin;Jo, Mi-Hyun;Kim, Young-Yeon;Oh, Jo-Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.238-246
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the distribution of mineral components, health and taste index for water supply plants, spring water located in northern Gyeonggi area and bottled waters in market to analyze Ca, K, Mg Na, Si, $F^-$ and $SO_4{^{2-}}$. Method: The samples were source and tap water in 15 water supply plants over 9 river basin, 172 spring water and 20 bottled water. The Ca, K, Mg Na and Si were analyzed by ICP-OES. The $F^-$ and $SO_4{^{2-}}$ were determined by Ion Chromatograph. Then, taste and health index were calculated using Hashimoto equation. Results: The average concentration of major minerals showed in same order of Ca > Na > Mg > K for all kinds of drinking water from water supply plants, spring waters and bottled waters. Total concentration of major minerals (Ca, K, Mg, Na) was calculated that showed 26.79 mg/L of tap water, 21.81 mg/L of spring water, 32.94 mg/L of bottled water on average. So, the spring waters indicated the lowest minerals sum. The tap water from water supply plants was categorized to Group I, II for 33.3, 44.4% according to K-index and O-index. Otherwise, spring water was classified as Group I, II for 44.0, 46.3%. Conclusion: According to the results of K and O-index, water from water supply plant showed higher K-index which means good for the health. Otherwise, spring water indicated higher O-index that people can feel more delicious than tap water. Futhermore, the mineral distribution of source water from water supply plants and spring water had indicated high correlation with geological effect.

The Changing Patterns of Demand-Supply and Role of Mineral Resources in Economic Growth during Industrialization of the Republic of Korea (한국공업화과정(韓國工業化過程)에서의 광물자원(鑛物資源)의 수급구조변화(需給構造變化)와 경제성장(經濟成長)에 있어서의 역할(役割))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.65-92
    • /
    • 1985
  • A total of 12 mineral commodities significant in domestic output, economy and/or strategy of the Republic of Korea are chosen to examine the structural changes in production and demand-supply of these minerals during the last two decades of her industrialization. These include iron and manganese ores as the raw materials for iron and steel making, copper, zinc and tungsten ores among other non-ferrous metallic minerals, limestone (cement), kaolin, talc, pyrophyllite and graphite among other non-metallic minerals, and anthracite coal as the only domestic source of fossil energy. These are reviewed historically in time-series based on the statistical data which are tabulated and graphed in terms of domestic output, export, import, apparent demand-supply, its increasing rate, and self-sufficiency rate of each commodity. The increasing rates of demand-supply (IRDS) of some more important commodities are compared with those of Gross Domestic Production (GDP) and Economic Growth Rate (EGR) to evaluate how the IRDS contributed to the GDP and EGR. The major results revealed are as follows: Among the 12 commodities, the domestic output of 8 commodities appeared to have grown with steady upward trends: they are ores of lead, zinc and tungsten, limestone (cement), kaolin, talc, pyrophyllite and anthracite coal. Two commodities, ores of iron and copper, continued with unchanging or slightly declining trends and varied fluctuations, in spite of their cardinal importance to the heavy industry and strategy of Korea. The remaining two, graphite and manganese ore, have gradualy declined in domestic output in which the former has still enough resource potential but the latter has not and virtually ceased its domestic output. Trade patterns for mineral commodities in the Republic of Korea during the last two decades have changed greatly, being marked by a shift from mineral-exporting to mineral importing, mainly because of increasing consumption of mineral raw materials for industrialization rather than beceuse of decreasing output of domestic mineral commodities in quantity. In terms of trade patterns, the 12 commodities concerned in this study can be classified into the following four groups. The 1st group - ores of lead and tungsten have only been exported without imports. The 2nd group - amorphous graphite, and pyrophyllite have mainly been exported but partly been imported. The 3rd group - kaolin, talc and crystalline graphite have equally been exported and imported, but quantity of imports have rapidly been increased with time. The 4th group - ores of iron, manganese and zinc have shifted from exports to imports during the industrialization, particularly owing to the initiation of iron and steel making by the Pohang Iron and Steel Company in the middle 1970' s and the new establishment of the Onsan Zinc Refinery in the late 1970' s. All of the 12 commodities under considerations were far above 100% in self-sufficiency rate before or in the early 1960' s. Recently, however, most of them have been declined to below 100% except for those of limestone (cement) and pyrophyllite. It is particularly serious to identify that the self-sufficiency rates of the three important metallic minerals, iron, copper and manganese ores in 1982 appeared to be 5.1%, 0.5%, and 0.01%, respectively. The average self-sufficiency rate of the total domestic minerals produced in 1982 was 14.4% (in value) for that year. Mining industry appeared to be extremely high in its intermediate demand rate whereas its intermediate input rate to be quite low indicating that mineral raw materials have been exerted strong forward linkage effects upon the other industries rather than backward linkage effects. In comparing the curves of increasing rates of demand-supply of several major minerals - iron ore, manganese ore, copper ore, limestone (cement), kaolin, and anthracite coal - with those of Gross Domestic Production and Economic Growth Rate drawn on every graph, it is clearly shown that the curves of increasing rates of demand-supply comprise around 6 to 7 periods of cycles which roughly harmonious with those of the curves of GDP and EGR, except for the curve of anthracite coal of which the configuration seems to have resulted from the (artificial) government's mineral policy rather than from economic free market mechanism. The harmonic feature of these curves well suggests that the increasing rates of demand-supply of major minerals have been significantly contributed to the GDP and EGR. In addition, the wider amplitudes of the iron, manganese and copper curves than those of the limestone (cement) and kaolin curves indicate that the contribution of the former, metallic commodities, has been greater than that of the latter, non-metallic commodities.

  • PDF

Investigation on the Material Flow of Cobalt for Resource Recovery and Recycling of Strategic-Metal Scrap (戰略金屬 스크랩 資源化를 위한 코발트 物質흐름 現況調査)

  • Sohn, Jeong-Soo;Yang, Dong-Hyo;Shin, Shun-Myung;Kang, Eun-Hee
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.43-55
    • /
    • 2005
  • As world population increases and the world economy expalds, so does the demand for natural resources especially strategic metals such as cobalt. An accurate assesment of the nation's minerals must include not only the resources available in the ground but also those that become available through recycling. In this paper, data on domestic and international supply of cobalt and its applications by end-user were analyzed for stable security of cobalt resources and effective recycling of cobalt scraps. Also, an initial evaluation of the flow of cobalt-containing materials in the United States was prepared. In 2003, 8,000 metric tons of cobalt were consumed in the United States and an estimated 28% of U.S. cobalt supply was derived from scrap. The superalloy industry and catalyst industries have well-established recycling or cobalt recovery practices. Recycling rates of cobalt scraps from magnet alloy and cemented carbide were relatively low.