• Title/Summary/Keyword: Mineral resources potential assessment

Search Result 22, Processing Time 0.028 seconds

GIS-based Metallogenic Prognosis of Lead-Zinc Deposits in China

  • Tang, Panke;Wang, Chunyan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.91-99
    • /
    • 2015
  • In this paper, we introduce the application of several currently-representative methods for mineral resources potential assessment on Geographic information system(hereinafter referred to as GIS), and combined with mineral resources potential assessment performed in China and with lead-zinc deposits taken as an example, summarized and divided minerals prediction and assessment models; on this basis, this paper presented the process of metallogenic prognosis based on MRAS platform, and made a simple analysis on existing problems.

Quantitative Assessment of Input and Integrated Information in GIS-based Multi-source Spatial Data Integration: A Case Study for Mineral Potential Mapping

  • Kwon, Byung-Doo;Chi, Kwang-Hoon;Lee, Ki-Won;Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.10-21
    • /
    • 2004
  • Recently, spatial data integration for geoscientific application has been regarded as an important task of various geoscientific applications of GIS. Although much research has been reported in the literature, quantitative assessment of the spatial interrelationship between input data layers and an integrated layer has not been considered fully and is in the development stage. Regarding this matter, we propose here, methodologies that account for the spatial interrelationship and spatial patterns in the spatial integration task, namely a multi-buffer zone analysis and a statistical analysis based on a contingency table. The main part of our work, the multi-buffer zone analysis, was addressed and applied to reveal the spatial pattern around geological source primitives and statistical analysis was performed to extract information for the assessment of an integrated layer. Mineral potential mapping using multi-source geoscience data sets from Ogdong in Korea was applied to illustrate application of this methodology.

Application of Prediction Rate Curves to Estimation of Prediction Probability in GIS-based Mineral Potential Mapping (GIS 기반 광물자원 분포도 작성에서 예측 확률 추정을 위한 예측비율곡선의 응용)

  • Park, No-Wook;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2007
  • A mineral potential map showing the distributions of potential areas for exploration of undiscovered mineral deposits is a kind of predictive thematic maps. For any predictive thematic maps to show reasonably significant prediction results, validation information on prediction capability should be provided in addition to spatial locations of high potential areas. The objective of this paper is to apply prediction rate curves to the estimation of prediction probability of future discovery. A case study for Au-Ag mineral potential mapping using geochemical data sets is carried out to illustrate procedures for estimating prediction probability and for an interpretation. Through the case study, quantitative information including prediction rates and probability obtained by prediction rate curves was found to be very important for the interpretation of prediction results. It is expected that such quantitative validation information would be effectively used as basic information for cost analysis of exploration and environmental impact assessment.

Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas (복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가)

  • Kim, Han-Saem;Sun, Chang-Guk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.

Assessment of Potential Natural Attenuation of Arsenic by Geological Media During Managed Aquifer Recharge (대수층 함양관리에 있어서 지질매질에 의한 비소 자연저감 가능성 평가)

  • Park, Dasomi;Hyun, Sung Pil;Ha, Kyoochul;Moon, Hee Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.12-22
    • /
    • 2020
  • Managed aquifer recharge (MAR) is a promising water management strategy for securing stable water resources to overcome water shortage and water quality deterioration caused by global environmental changes. A MAR demonstration site was selected at Imgok-ri, Sangju-si, Korea, based on screening for the frequency of drought events and local water supply situations. The abundant groundwater discharging from a nearby abandoned coal mine is one of the potential recharge water sources for the MAR implementation. However, it has elevated levels of arsenic (~12 ㎍/L). In this study, the potential of the natural attenuation of arsenic by the field geological media was investigated using batch and column experiments. The adsorption and desorption parameters were obtained for two drill core samples (GM1; 21.8~22.8 m and GM2; 26.0~27.8 m depth) recovered from the potentially water-conducting fracture-zones in the injection well. The effluent arsenic concentrations were monitored during the continuous flow of the mine drainage water through the columns packed with the core samples. GM2 removed about 60% of arsenic in the influent (0.1 mg-As/L) while GM1 removed about 20%. The results suggest that natural attenuation is an acitive process occurring during the MAR operation, potentially lowering the arsenic level in the mine drainage water below the regulatory standard for drinking water. This study hence demonstrates that using the mine drainage water as the recharge water source is a viable option at the MAR demonstration site.

Induced Polarization Surveys of Contaminants and Introduction to Case Studies (오염원에 대한 유도분극탐사 반응 및 사례 소개)

  • Kim, Bitnarae;Caesary, Desy;Yu, Huieun;Cho, AHyun;Song, Seo Young;Cho, Sung Oh;Joung, Inseok;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.86-100
    • /
    • 2020
  • Analyzing and monitoring environmental contaminants based on geophysical exploration techniques have become important and it is now widely applied to delineate spatial distribution geophysical characteristics in wide area. Among the techniques, induced polarization (IP) method, which measures polarization effects on electrical potential distribution, has drawn much attention as an effective tool for environmental monitoring since IP is sensitive to changes in biochemical reactions. However, various reactions stemming from the presence of multiple contaminants have greatly enhanced heterogeneity of polluted sites to result in highly variable electrical characteristics of the site. Those contaminants influence chemical and physical state of soil and groundwater to alter electrical double layer, which in turn influences polarization of the media. Since biochemical reactions between microbes and contaminants result in various IP effects, IP laboratory experiments were conducted to investigate IP responses of the contaminated soil samples under various conditions. Field IP surveys can delineate the spatial distribution of contamination, while providing additional information about electrical properties of a target medium, together with DC resistivity. Reviewing IP effects of contaminants as well as IP surveys can serve as a good starting point for the application of IP survey in site assessment for environmental remediation.

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

An Eco-efficiency Analysis of Nd Permanent Magnet Recycling (Nd 영구자석(永久磁石) 재활용(再活用)의 Eco-efficiency 분석(分析))

  • Kim, Byung Ju;Kim, Hyoungseok;Yoon, Ho Sung;Cho, Bong Gyoo;Hur, Tak
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.55-61
    • /
    • 2013
  • In this study, eco efficiency analysis is performed to analyze Neodymium (Nd) containing permanent magnet recycling process. Life cycle assessment (LCA) and life cycle costing (LCC) are used to apply eco efficiency analysis. In the environmental aspects, global warming potential (GWP) of 1kg permanent magnet is 1.25E + 00 kg $CO_2$ eq. and abiotic resource depletion potential (ADP) is 1.10E - 02 Sb eq. This recycling process costs about 2130 KWR. Environmental efficiency of GWP is at 6.43 and ADP is at 5.32 when compared with vigin metal. Economic efficiency is at 6.74. This study confirms that Nd containing permanent magnet recycling process is sustainable system because of environmental and economical improvement.

Numerical Study of Contaminant Pathway for Risk Assessment in Subsurface of Contaminated Sites (오염부지 위해성평가 시 오염물질 노출이동경로 평가를 위한 수치모델 적용에 관한 연구)

  • Chang, Sun Woo;Moon, Hee Sun;Lee, Eunhee;Joo, Jin Chul;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.13-23
    • /
    • 2019
  • The purpose of this study is to suggest conceptual models based on finite numerical method that can be used to assess contaminant transport through subsurface and estimate exposed concentration at contaminated site. This study tested various assumptions of the numerical models for contaminant transport in unsaturated and saturated zones to simulate the pathways to the human exposal point. For this purpose, models for seven possible scenarios of contaminant transport were simulated using the numerical code MODFLOW and MT3D. The simulation results that showed different peak concentrations and travel times were compared. In conclusion, the potential utility of the numerical models in the site specific risk analysis suggested as well as future research ramifications.

Column Bioleaching of Arsenic from Mine Tailings Using a Mixed Acidophilic Culture: A Technical Feasibility Assessment (혼합 호산성 박테리아를 이용한 광미로부터 비소의 Column Bioleaching : 기술적 평가)

  • Borja, Danilo;Lee, Eunseong;Silva, Rene A.;Kim, Heejae;Park, Jay Hyun;Kim, Hyunjung
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.69-77
    • /
    • 2015
  • Heap bioleaching for detoxification of mine tailings is a promising technology; however, long-term studies that aim to understand the potential of this process are scarce. Therefore, this study assesses the feasibility of column bioleaching as an alternative technology for treatment of mine tailings with high concentrations of arsenic during a long-term experiment (436 days). To accomplish this objective, we designed a 350-mm plastic column that was packed with 750 g of mine tailings and inoculated with an acidophilic bacterial culture composed of A. thiooxidans and A. ferrooxidans. Redox potential, pH, ferric ion generation, and arsenic concentration of the off-solution were continuously monitored to determine the efficiency of the technology. After 436 days, we obtained up to 70% arsenic removal. However, several drops in removal rates were observed during the process; this was attributed to the harmful effect of arsenic on the bacteria consortium. We expect that this article will serve as a technical note for further studies on heap bioleaching of mine tailings.