• Title/Summary/Keyword: Mineral admixture

Search Result 263, Processing Time 0.025 seconds

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

A Study of the Effect of Mineral Admixtures on the Chloride Diffusion of the Concrete Immersed in Chloride Solution (무기질 혼화재가 염수침지한 콘크리트의 염화물 확산에 미치는 영향에 관한 연구)

  • Kim Dong-Seok;Yoo Jae-Kang;Park Sang-Joon;Won Cheol;Kim Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.679-686
    • /
    • 2005
  • The corrosion of reinforcement induced by chloride ingress is the main deterioration cause of coastal reinforced concrete structures. In this paper, an experimental study was executed to investigate the effect of the kinds and replacement ratios of mineral admixtures (fly-ash, ground granulated blast-furnace slag silica fume and meta-kaolin), W/B and curing time on chloride diffusion of concrete by long-time immersion test in chloride solution. According to the result, the use of mineral admixtures was effective in improving the resistant to chloride ingress. The chloride penetration depth and diffusion coefficient were decreased as replacement ratios of mineral admixture were increased. The kind and replacement ratio of the mineral admixture are more important than the W/B in reducing the chloride diffusion of concrete. Chloride binding capacity of mineral admixture, which was sequenced in the order of MK

Physical Properties and Drying Shrinkage of Concrete Using Shrinkage Reducing Admixtures (수축저감제를 사용한 콘크리트의 물성변화 및 건조수축 저감 특성)

  • Han, Cheon-Goo;Song, Seung-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • This paper reports the contribution of Shrinkage reducing admixture(SRA) to the physical properties and drying shrinkage of concrete. Dosage of SRA is varied with. For the properties of fresh concrete, an increase in SRA dosage results in a decrease in fluidity and air content, while setting time is accelerated. For the properties of hardened concrete, the incorporation of mineral admixture leads to a decrease in compressive strength at early age, whereas after 28 days, the incorporation of fly ash(FA) and blast furnace slag(BS) has greater compressive strength than conventional concrete without admixture. The use of SRA results in a decrease in compressive strength. The incorporation of SRA with every $1\%$ increase causes the decrease of compressive strength by as much as $3\~6\%$. For drying shrinkage properties, the incorporation of FA and BS reduces drying shrinkage slightly. The use of SRA also decreases drying shrinkage. Every $1\%$ of increase in SRA dosage can reduce drying shrinkage by as much as $10\~15\%$

Chloride Diffusion Coefficient at Reference Time for High Performance Concrete for Bridge Pylons in Marine Environment (해상교량 주탑용 고성능 콘크리트의 기준재령 염소이온 확산계수)

  • Yoon, Chul-Soo;Kim, Ki-Hyun;Yang, Woo-Yong;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.435-444
    • /
    • 2012
  • High performance concrete mixes are selected and corresponding test specimens are made for the study of chloride diffusion coefficient at reference time. The concrete mixes were same designs as those used in construction of bridges located in a marine environment. Mix design variables included binder type, water-to-binder ratio, mineral admixtures to total binder weight substitution ratio, fine aggregate source, chemical water reducer admixture type for high strength and high flowability, and target slump or slump flow. The test results showed that the diffusion coefficients at reference time varied significantly according to the type of mineral admixtures and their substitution ratios. A model for diffusion coefficient at reference time considering the type of mineral admixture and the substitution ratio was developed. Diffusion coefficients from the developed model were compared with those from literature review, a previous model, and additional test results. All of the comparisons verified that the developed model can reasonably predict diffusion coefficients and the application of the model to the durability design against chloride penetration is appropriate.

Durability Assessment for Crushed Sand Wet-mix Shotcrete Mixed with Mineral Admixtures (부순모래를 사용한 습식 숏크리트의 광물성 혼화재료 혼입에 따른 내구성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.607-614
    • /
    • 2014
  • The purpose of this dissertation was to investigate the effect of mineral admixtures, such as fly ash, blast furnace slag powder, meta kaolin and silica fume, on the basic properties and durability of crushed sand shotcrete, selecting a series of shotcrete mixtures with a variable admixture. Compressive strength increased as the content of mineral admixtures increased, specially it was the most effective when using meta kaolin both at sample specimen and core after shotcreting. Rapid chloride ion permeability test and sulfuric acid resistance test showed that both durability increased as the substitute rate of mineral admixture increased. In air void analysis with image analysis, the targeted the spacing factor and specific surface were not satisfied because air-entrained agent was not used.

An Experimental Study on the Effect of Mineral Admixtures for the Durability of Shotcrete (혼화재 종류가 숏크리트 내구성에 미치는 영향에 관한 연구)

  • Paik, Shin-Won;Chung, Dok-Chu
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.98-103
    • /
    • 2004
  • Shotcrete needs the enough durability without deterioration for life time. But shotcrete is being deteriorated according to aging like concrete by internal causes whithin itself and by external causes which can be physical, chemical, or mechanical. Durable shotcrete can be made by incresing the cement content, adding chemical and mineral admixtures and so on. So, in this study, chloride ion penetration test, freeze and thaw test, neutralization test were conducted to examine the durability characteristice of shotcrete with mineral admixtures such as silica fume, blast-furnace slag and fly ash. These results indicate that shotcrete with silica fume is durable. Therefore, the present study provides a firm base to make high performance shtcrete.

A Study on the Temperature Dependency Affecting Setting and Strength Development of Concrete Using Mineral Admixtures (혼화재 사용 콘크리트의 응결 및 강도발현에 미치는 온도의존성에 관한 연구)

  • Joo, Eun-Hi;Shon, Myeong-Soo;Jeon, Hyun-Kyu;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.707-710
    • /
    • 2005
  • This experimental study investigate temperature dependency affecting setting and strength development of concrete using mineral admixtures such as CKD, FA and BS. For the properties of setting at $5^{\circ}C$, setting time of concrete with mineral admixture was delayed about $3\~14$ hour compared with that of plain concrete. Use of CKD had a desirable effect on reducing setting retard under $5^{\circ}C$ because of $CaCO_3$ of CKD while use of FA and BS retarded setting time greatly. For compressive strength under $5^{\circ}C$, concrete with CKD had the most compressive strength in early age compared with the other mineral admixtures but exhibited slight strength loss in $-5^{\circ}C$ at 28days. Especially, concrete with FA and BS was observed in early stage at low curing temperature because of strength loss remarkably in $-5^{\circ}C$.

  • PDF

Mechanical Properties And Chlorde Penetration Resistance of Shotcrete according to Mineral Admixture Types and Supplemental Ratio (광물성 혼화재료의 종류 및 혼입율에 따른 숏크리트의 역학적 특성 및 염해 저항성)

  • Han, Seung-Yeon;Yun, Kyong-Ku;Nam, Kyeong-Gung;Lee, Kyeo-Re;Eum, Young-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4960-4968
    • /
    • 2015
  • In this study to improve the chloride durability of the shotcrete structure depending on types and contents of mineral admixture chloride resistance was evaluated by NT BUILD 492 of european test standards. It was also evaluated with the mechanical properties such as static strength and chloride penetration resistance. For shotcrete mixed crushed stone aggregate of the maximum size 10mm of coarse aggregates was produced. Based on 28days compression strength the variable mixed with 15% silica fume showed the highest strength in 67.55MPa. As the content of fly ash and blast furnace slag increased, the strength lowered. In the chloride penetration resistance test, OPC showed "high grade" and In the case of admixture, the penetration resistance tended to increase in all variables except the fly ash. In order to evaluate the service life, the accelerated chloride penetration test was conducted by the standards of KCL, ACI, FIB. Test results were obtained with the lowest spreading factor in a variable mixed with silica fume of 15%. At the KCI standards, It was found to have a service life of about 65 years and at the FIB standards, It was found to have a service life of 131 years. Among standards, the service life of KCI standard in all of the variables was evaluated as the lowest.

Durability Assessment of High Strength Concrete with High Volume Mineral Admixture (다량의 광물질 혼화재를 사용한 고강도 콘크리트의 내구성 평가)

  • Baek, Chul-Woo;Kim, Hoon-Sang;Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.641-649
    • /
    • 2015
  • The purpose of this study was to assess the durability of high-strength concrete with high volume mineral admixture (HVMAC) derived from previous studies within ternary blended concrete (TBC) and normal concrete (NC). Four durability evaluation types such as chloride penetration resistance, freezing and thawing resistance, carbonation resistance in two pre-treatment conditions, and sulfuric acid and sulfate resistance using 5% sulfuric acid ($H_2SO_4$), 10% sodium sulfate ($Na_2SO_4$), and 10% magnesium sulfate ($MgSO_4$) solution were selected and performed in this study. HVMAC showed the excellent chloride penetration resistance in any age and the freezing and thawing durability close to 100%. In addition, HVMAC affected more reduction in carbonation resistance than TBC. When the curing time was increased, to create a concrete internal organization densely improved resistance to carbonation. HVMAC also showed the most superior in sulfuric acid and sulfate resistance. As the reduction of calcium hydroxide and $C_3A$ to apply a large amount of admixture reduced the swelling and cracking of concrete, the strength reduction and mass change of concrete was found to be small indicated.

A Study on the Quality of Ground Granulated Blast Furnace Slag as a Mineral Admixture for Concrete (콘크리트용 혼화재(混和材)로서 고로(高爐)슬래그 미분말(微粉末)의 품질(品質)에 대한 연구(研究))

  • Moon, Han Young;Choi, Yun Wang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.721-728
    • /
    • 1994
  • The objective of this research is to analyze whether the ground granulated blast furnace (GGBF) slag, by-product of industry in domestic iron-foundary, can be useful as a mineral admixture for concrete by investigating physical and chemical property. In addition, according to making an fundamental experiment on mortar and concrete mixed with GGBF slag to some grade, examining the consistency, the compressive strength and the resistance to sulfate attack of concrete and mortar, the acquired results are that the compressive strength was increased and the resistance to sulfate attack was predominant.

  • PDF