• Title/Summary/Keyword: Mineral Trioxide Aggregate

Search Result 124, Processing Time 0.022 seconds

Histological evaluation of direct pulp capping with DSP-derived synthetic peptide in beagle dog (비글견에서 DSP 유도 합성 펩타이드를 이용한 직접 치수 복조술에 대한 조직학적 연구)

  • Kim, Jae-Hoon;Hong, Jun-Bae;Lim, Bum-Soon;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.120-129
    • /
    • 2009
  • The purpose of this study was to investigate the pulpal response to direct pulp capping with dentin sialoprotein (DSP) -derived synthetic peptide in teeth of dogs, and to compare its efficacy to capping substances $Ca(OH)_2$ and white mineral trioxide aggregate (WMTA). A total of 72 teeth of 6 healthy male beagle dogs were used. The mechanically exposed pulps were capped with one of the following: (1) DSP-derived synthetic peptide (PEP group): (2) $Ca(OH)_2$ (CH group): (3) a mixture paste of peptide and $Ca(OH)_2$ (PEP+CH group): or (4) white MTA (WMTA group). The access cavity was restored with a reinforced glass ionomer cement. Two dogs were sacrificed at each pre-determined intervals (2 weeks, 1 month, and 3 months). After the specimens were prepared for standard histological processing, sections were stained with hematoxylin and eosin. Under a light microscope, inflammatory response and hard tissue formation were evaluated in a blind manner by 2 observers. In the PEP group, only 3 of 17 specimens showed hard tissue formation, indication that the DSP-derived synthetic peptide did not induce proper healing of the pulp. Compared with the CH group, the PEP group demonstrated an increased inflammatory response and poor hard tissue formation. The CH and WMTA groups showed similar results for direct pulp capping in mechanically exposed teeth of dogs.

Comparison of Microleakage and Compressive Strength of Different Base Materials (여러 치과 와동 기저재용 재료들의 미세누출 및 압축강도 비교)

  • Jang, Eunyeong;Lee, Jaesik;Nam, Soonhyeun;Kwon, Taeyub;Kim, Hyunjung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.2
    • /
    • pp.168-175
    • /
    • 2021
  • This study compared the microleakages and compressive strengths of various base materials. To evaluate microleakages, 50 extracted permanent premolars were prepared. The teeth divided into 5 groups of 10 each according to the base materials. Cavities with a 5.0 mm width, 3.0 mm length, and 3.0 mm depth were formed on the buccal surfaces of the teeth. After filling the cavities with different base materials, a composite resin was used for final restoration. Each specimen was immersed in 2% methylene blue solution and then observed under a stereoscopic microscope (× 30). To evaluate the compressive strength, 5 cylindrical specimens were prepared for each base material. A universal testing machine was used to measure the compressive strength. The microleakage was highest in the Riva light cureTM group and lowest in the BiodentineTM and Well-RootTM PT groups. For the compressive strengths, in all groups, acceptable strength values for base materials were found. The highest compressive strength was observed in the Fuji II LCTM group and the lowest strength in the Well-RootTM PT group.

Cytotoxicity of Various Calcium Silicate-based Materials with Stem Cells from Deciduous Teeth (유치 줄기세포에 대한 다양한 규산칼슘계 재료의 세포독성)

  • Yun, Jihye;You, Yong-Ouk;Ahn, Eunsuk;Lee, Jun;An, So-Youn
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • The purpose of this study was to compare and evaluate the cytotoxicity of 3 calcium silicate-based materials (CSMs) on stem cells from human exfoliated deciduous teeth (SHEDs). The powder of Retro $MTA^{(R)}$ (RM), $EZ-Seal^{TM}$ (EZ) and ENDOCEM $Zr^{(R)}$ (EN) was eluted with SHED culture media and then filtered. The SHEDs were cultured in the presence of the various concentrations of the eluate. To investigate the effect of the 3 CSMs on SHED proliferation, the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was performed. Flow cytometry analysis was also performed to identify any changes in the cellular phenotype. The absorbance values of the SHEDs cultured in the eluate of samples at a 10% concentration showed the following relation: RM > EN > EZ (p = 0.0439). However, the SHEDs maintained their mesenchymal phenotype regardless of product exposure. Although the 3 CSMs did not alter the SHED stem cell markers, EZ may be a less cytocompatible than RM and EN.

Biological assessment of a new ready-to-use hydraulic sealer

  • Francine Benetti ;Joao Eduardo Gomes-Filho ;India Olinta de Azevedo-Queiroz;Marina Carminatti;Leticia Citelli Conti;Alexandre Henrique dos Reis-Prado ;Sandra Helena Penha de Oliveira ;Edilson Ervolino ;Eloi Dezan-Junior ;Luciano Tavares Angelo Cintra
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.21.1-21.12
    • /
    • 2021
  • Objectives: This study compared the cytotoxicity, biocompatibility, and tenascin immunolabeling of a new ready-to-use hydraulic sealer (Bio-C Sealer) with MTA-Fillapex and white MTA-Angelus. Materials and Methods: L929 fibroblasts were cultivated and exposed to undiluted and diluted material extracts. Polyethylene tubes with or without (the control) the materials were implanted into the dorsa of rats. At 7 days and 30 days, the rats were euthanized, and the specimens were prepared for analysis; inflammation and immunolabeling were measured, and statistical analysis was performed (p < 0.05). Results: MTA-Fillapex exhibited greater cytotoxicity than the other materials at all time points (p < 0.05). The undiluted Bio-C Sealer exhibited greater cytocompatibility at 6 and 48 hours than white MTA-Angelus, with higher cell viability than in the control (p < 0.05). White MTA-Angelus displayed higher cell viability than the control at 24 hours, and the one-half dilution displayed similar results at both 6 and 48 hours (p < 0.05). At 7 days and 30 days, the groups exhibited moderate inflammation with thick fibrous capsules and mild inflammation with thin fibrous capsules, respectively (p > 0.05). At 7 days, moderate to strong immunolabeling was observed (p > 0.05). After 30 days, the control and MTA-Fillapex groups exhibited strong immunolabeling, the white MTA-Angelus group exhibited moderate immunolabeling (p > 0.05), and the Bio-C Sealer group exhibited low-to-moderate immunolabeling, differing significantly from the control (p < 0.05). Conclusions: Bio-C Sealer and white MTA-Angelus exhibited greater cytocompatibility than MTA-Fillapex; all materials displayed adequate biocompatibility and induced tenascin immunolabeling.