• 제목/요약/키워드: Mineral Filler

검색결과 46건 처리시간 0.023초

Effect of cement as mineral filler on the performance development of emulsified asphalt concrete

  • Liu, Baoju;Wu, Xiang;Shi, Jinyan;Wu, Xiaolong;Jiang, Junyi;Qin, Jiali
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.515-526
    • /
    • 2020
  • Cold-mixed asphalt mixture is a widely recommended asphalt pavement materials with potentially economic and environmental benefits. Due to the reduction of natural non-renewable mineral resources, powder minerals with similar properties are considered as new mineral fillers in asphalt mixtures. This study explored the feasibility of using cement to replace natural limestone powder (LP) in emulsified asphalt concrete modified by styrene-butadiene styrene copolymer. The experimental tests, including compressive strength, Marshall stability as well as moisture susceptibility test, were used to investigate the mechanical properties, the Marshall stability, flow value, as well as the moisture damage. In addition, the influence of material composition on the performance of asphalt concrete is explained by the microstructure evolution of the pore structure, the interface transition zone (ITZ), and the micromorphology. Due to mineralogical reactivity of cement, its replacement part of LP improved the mechanical properties, Marshall stability, but it will reduce the moisture susceptibility and flow value. This is because with the increase of the cement substitution rate, the pore structure of the asphalt concrete is refined, the width of ITZ becomes smaller, and the microstructure is more compact. In addition, asphalt concrete with a larger nominal particle size (AC-16) has relatively better performance.

아스팔트 콘크리트용 채움재로서 제강더스트의 특성에 관한 실험적 연구 (An Experimental Study on Properties of Electric Arc Furnace Dust for Minearal Filler of Asphalt Concrete)

  • 김주원
    • 콘크리트학회지
    • /
    • 제5권3호
    • /
    • pp.161-168
    • /
    • 1993
  • 본 연구는 아스팔트 콘크리트의 채움재로서 제강더스트의 사용가능성을 실험을 통하여 분석하였다. 실험에는 제강더스트의 기본물성시험과 혼합물의 비교시험을 포함시켰다. 비교시험에서는 채움재로서 석회석분을 사용하는 경우와 제강더스트를 사용하는 경우, 채움재와 아스팔트를 혼합한 필리-비투먼, 그리고 골재까지 혼합한 아스팔트 콘크리트에 대하여 물성을 비교분석하였다. 실험결과 제강더스트는 포장용 채움재의 규정을 만족시키며, 제강더스트를 채움재로 사용한 아스팔트 콘크리트보다 우수하며, 제강더스트는 아스팔트 혼합물용 채움재로써 충분히 사용가능한 것으로 밝혀졌다.

A Review on Use of Carbohydrate-based Fillers and Pigments in Packaging Paper

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • 한국포장학회지
    • /
    • 제22권3호
    • /
    • pp.155-161
    • /
    • 2016
  • As one of traditional packaging materials, paper and paperboard are being more popular and beneficial thanks to their environmental sustainability and have been widely used in packaging applications, from light weight infusible tissue for tea/coffee bags to heavy duty boards for the distribution. Papermakers have to design the products having a desired customized function with their paper machine. Globally, the use of filler and pigment in papermaking is now a very common practice to meet the needs of customers. Many benefits can be achieved as a result of filler addition, which mainly includes cost and energy savings. The replacement of traditional mineral fillers and pigments with biodegradable and renewable carbohydrate polymers is a very interesting and promising research topic due to the concern of environmental impact. In this review paper, the use of traditional and novel carbohydrate fillers and pigments in cellulosic paper is highlighted. It is noteworthy that there are still some challenges and technical barriers associated with the use of these organic materials in point of structural stabilities and manufacturing costs, although most of them are available in market as the commercialized products. With the emerging nanotechnologies, it is believed that the use of carbohydrate-based filler and pigment for papermaking will increase and bring technical advantages to industry.

A Brief review of Aragonite Precipitated Calcium Carbonate (PCC) Synthesis Methods and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.443-455
    • /
    • 2017
  • This article provides an exclusive overview of the synthesized aragonite precipitated calcium carbonate and its applications in various fields. The last decade has seen a steady increase in the number of publications describing the synthesis, characterization and applications of calcium carbonate morphologies. Mainly, two kinds of processes have been developed for the synthesis of aragonite precipitated calcium carbonate under controlled temperature, concentrations and aging, and the final product is single-phase needle-like aragonite precipitated calcium carbonate formed. This review is mainly focused on the history of developed methods for synthesizing aragonite PCC, crystal growth mechanisms and carbonation kinetics. Carbonation is an economic, simple and ecofriendly process. Aragonite PCC is a new kind of functional filler in the paper and plastic industries, nowadays; aragonite PCC synthesis is the most exciting and important industrial application due to numerous attractive properties. This paper describes the aragonite PCC synthetic approaches and discusses some properties and applications.

전주일(全州一) 금속광산(金屬鑛山) 폐광미(廢鑛尾)의 활용(活用) 방안(方案) 연구(硏究) (Utilization of Mine failings from the Jeonju-Il Mine)

  • 정수복;채영배;현종영;김형석;윤성문
    • 자원리싸이클링
    • /
    • 제16권1호
    • /
    • pp.44-53
    • /
    • 2007
  • 전주일 광산 광미는 $SiO_2$의 함유량이 높고, 유해 중금속 성분의 함유량이 적은 특성을 갖고 있다. 본 연구에서는 이러한 광미를 각종 산업원료로 재활용할 수 있는 가능성을 알아보았다. 광미는 세라믹스 소결체의 원료로 사용한 결과, 색도 및 색상, 소성수축률, 흡수율 등에서 우수한 물성을 보였다. 보통포틀랜드시멘트 원료 중 실리카 성분으로 조합 원료의 2.59%까지 사용이 가능하였다. 광미를 조립물과 미립물로 분리하여 조립산물은 건조 시멘트 모르타르 원료로, 미립산물은 역청 포장용 채움재로 사용한 결과, 두 시료 모두 환경 위해성이 없고 KS 규격에 적합한 물성을 나타내었다.

폐기 무기 부산물의 제지용 충전제로의 활용성 평가 연구 (Study on the Application of Inorganic Byproduct from Fertilizer Manufacture Process as an Alternative Filler)

  • 이지영;이은규;이도엽;윤경태;성용주;최재성;김다미;김병호;임기백
    • 펄프종이기술
    • /
    • 제44권1호
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, we investigated the possible use of a new inorganic material as alternative filler in the paper industry. The inorganic material is a mineral composed of calcium sulfate, that is generated when manufacturing phosphate fertilizer. The inorganic material was dehydrated by the thermal treatment to $200^{\circ}C$, $500^{\circ}C$, $700^{\circ}C$, and $900^{\circ}C$ to prepare white filler powders. Their basic properties, including color, particle shape, elements, and average particle size were identified. To determine the effect of new inorganic filler on paper's physical properties and strength, handsheets were prepared from HwBKP, SwBKP, and thermal treated inorganic fillers. Handsheets' ISO brightness, opacity, bulk, breaking length, and stiffness were measured. Results confirmed that thermal treated inorganic filler could be beneficial to the bulk and opacity of paper while maintaining higher level of breaking length and stiffness that is achieved using talc.

Improvements in the Physical Properties of Hanji by Using Red Algae Pulp

  • Seo, Yung-Bum;Kim, Young-Wook;Lee, Min-Woo;Jung, Sun-Young
    • 펄프종이기술
    • /
    • 제41권5호
    • /
    • pp.33-37
    • /
    • 2009
  • Hanji is a traditional Korean handmade paper, made of bast fibers of the paper mulberry. Its fiber furnish is much more expensive than wood fiber furnish. Hanji with a low basis weight requires additional opacity and smoothness for better writing and printing. Filler such as calcium carbonate can not be used to raise the opacity of Hanji because of its low retention in low basis weight paper and the high freeness of the Hanji fiber furnish. Addition of red algae pulp, which is prepared from marine red algae to the Hanji fiber furnish negated retention problems happening in the case of mineral filler addition, and produced a substantial improvement in the opacity and smoothness of Hanji. The higher retention was due to the much larger size of the red algae fibers compared to the mineral fillers. The improvement in opacity and smoothness were also due to the shape of the red algae fibers: that red algae fibers are narrower in widths and shorter in lengths than wood fibers results in increased surface area and smoothness.

Oyster Shell waste is alternative sources for Calcium carbonate (CaCO3) instead of Natural limestone

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제27권1호
    • /
    • pp.59-64
    • /
    • 2018
  • In this paper, we investigated the alternative sources of limestone. Oyster shell waste originated from aquaculture that causes a major disposal landfill problem in coastal sectors in southeast Korea. Their inadequate disposal causes a significant environmental problems araised. Bio mineralization leads to the formation of oyster shells and consists $CaCO_3$ as a major phase with a small amount of organic matter. It is a good alternative material source instead of natural lime stone. The utilization of oyster shell waste for industrial applications instead of natural limestone is major advantage for conservation of natural limestone. The present work describes the limestone and oyster shells hydraulic activity and chemical composition and characteristics are most similar for utilization of oyster shell waste instead of natural limestone.

Improvement of Absorption Performances of Superabsorbent Hydrogel Nanocomposites Using Clay Mineral

  • Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제54권3호
    • /
    • pp.201-208
    • /
    • 2019
  • Superabsorbent hydrogel (SAH) is a lightly crosslinked hydrophilic functional polymer material comprising a flexible chain structure, which can absorb and retain high amounts of water or aqueous fluids even under high pressure. Therefore, it is important to improve their characteristics such as absorption performance, residual monomer content, and water permeability. SAH nanocomposites were prepared using clay mineral as an inorganic filler and the influence of post-treatment processes such as quenching and aging process on their properties was studied. In addition, surface-crosslinking process was applied to improve the absorption performance associated with mechanical properties and water permeability. The structure of the SAH was characterized using attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy.

광물화된 탄소나노튜브 첨가재의 계면 특성화 (Interfacial Characterization of Mineralized Carbon Nanotubes)

  • 박찬욱;정지원;윤군진
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.282-287
    • /
    • 2018
  • 본 연구는 광물화된 탄소나노튜브를 고분자 기지재료의 강화재로 사용할 때, 계면 결합력이 기존 탄소나노튜브 강화재에 비해 어떤 차이를 보이는지 분자동역학 시뮬레이션을 통해 탐구한다. 최근 탄소나노튜브에 질소를 도핑한 후 표면을 광물화 하는 실험 연구가 보고되고 있다. 하지만 복합재료의 강화제로 첨가되었을 때 보일 수 있는 물성 증가 현상에 대한 연구는 아직 부족하다. 광물질로는 실리카($SiO_2$)를 사용했고 고분자 기지재료로는 열 가소성 수지인 poly(methyl metacrylate) (PMMA)를 사용했다. 계면 결합력과 계면 전단 응력을 계산하기 위해 강화재를 기지재료로부터 빼내는 pull-out 시뮬레이션이 진행되었다. 계산 결과, 실리카 광물화된 탄소나노튜브가 고분자 기지재료와 향상된 계면 상호작용을 가지는 것으로 조사되었다. 본 연구진은 향후 광물화된 탄소나노튜브 강화재가 첨가된 나노 복합재료의 열 기계적 물성을 분석하여 다양한 분야에서의 활용 가능성을 제시할 계획이다.