• Title/Summary/Keyword: Mineral Elements

Search Result 571, Processing Time 0.039 seconds

Studies on the Growth and Nutrient Uptake of Flag Leaf and Chaff of Rice Plant in Cold Injury Location I. Difference of Some Inorganic Elements of Grain Chaff Having Different Rice Variety and Elevation (냉해지대의 수도생육과 임, 불임 인각의 양분흡수에 관한 연구 제1보 지대별 수도품종에 따른 인각의 무기성분조성차)

  • Kim, Y.J.;Choi, S.I.;Ra, J.S.;Lee, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.198-205
    • /
    • 1982
  • In 1980, rice was considerably damaged by abnormal low temperature. In this paper, to determine the effect of low temperature on the growth and nutrition of rice, the experiment were carried out: varietal response to low temperature in the region with different elevations. Regional differences of heading response to low temperature were observed among varieties. The difference of days between regions were bigger in tongil lines than Japonica lines. Especially, Milyang 42 and Hangangchalbeo might belong the cold suceptible group, since the varieties were severely delayed their heading in the high mountainous region as comparred to plain region. The delay of heading with low temperature was brought out grain sterility, and fertility and ripening ratio is influenced cold tolerance and elevations, and it's decreased yield. Varieties with higher grain sterility by low temperature have higher total nitrogen content, but tended to have lower potassium and phosphate contents in the flag leaf. High content of total nitrogen, low contents of potassium and silicate were observed in the sterilized grain chaff an the opposite result were noted in the ferilized grain chaff at the ripening stage. The results reveal that the balance of these mineral element may play an important role in ripening and possibly cold tolerance.

  • PDF

Scientific Examination of Quarries of the Stone Remains Excavated from the First Burial Site of King Jeongjo (전(傳) 정조대왕 초장지 출토 석물의 채석지에 대한 과학적 검토)

  • LEE Myeongseong;AHN Yubin;KIM Jiyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.196-212
    • /
    • 2023
  • This study identifies the origin of stone remains (pavement and banister stones) excavated from the first burial site of King Jeongjo through petro-mineralogical analysis in a quarry and examines the relationship with the stone remains from Geolleung (King Jeongjo's Tomb). The excavated stones from the first burial site of King Jeongjo are all light gray fine-grained biotite granite, and mainly contain quartz, feldspar, and biotite. The magnetic susceptibility of the stones ranges from 5.55 to 12.10 (average 7.00) (SI unit). According to old documents, the quarrying sites of the stones were Mts. Aengbong and Yeogisan (Godeung-dong District, Suwon), and we found a fine-grained biotite granite outcrop behind Mr. Aengbong (currently the site of Yeonggwang Apartment) with a geological survey, and it was petrologically similar to the stone remains from the first burial site. The magnetic susceptibility of the outcrop rocks was 5.15 to 7.24 (SI unit), and their petro-mineral and geochemical characteristics were found to be the same as those of the first buried site and Geolleung Tomb. It was confirmed that most of the stone elements in the first burial site were reused to build Geolleung Tomb while moving the grave. Only the pavement and banister stones seem to have been discarded in the first grave site without being transferred. This is because the size of the new burial mound became larger than the first grave during construction because Queen Hyoui (the consort of King Jeongjo) died and was buried together with the king in the same tomb, and the stone blocks did not fit a grave that size. With these research results, it was possible to compare and examine the old records and scientific analysis data, and they are expected to be used as basic source material in related research.

Correlation of Arsenic and Heavy Metals in Paddy Soils and Rice Crops around the Munmyung Au-Ag Mines (문명 금은광산 주변 논토양에서 As 및 중금속의 토양과 벼작물의 상관성 평가)

  • Kwon, Ji Cheol;Park, Hyun-Jung;Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.337-349
    • /
    • 2015
  • This study has focused on investigation of correlation for As and heavy metals in paddy soil and rice crops sampled in the vicinity of the abandoned Munmyung Au-Ag mine. Soil samples extracted by various methods including aqua regia, 1 M $MgCl_2$, 0.01 M $CaCl_2$ and 0.05 M EDTA were analyzed for As and heavy metals (Cd, Cu, Pb and Zn). Rice grain samples grown on the soils were also analyzed for the same elements to evaluate the relationships between soils and rice crops. According to soil extraction methods, As and heavy metal contents in the soils were decreased in the order of aqua regia > 0.01 M $CaCl_2$ > 1 M $MgCl_2$ > 0.05 M EDTA. In addition to correlation analysis, statistically significant correlation with the four extraction methods (p<0.01) were found in the soil and rice samples. As calculation of biological accumulation coefficients (BACs) of the rice crops for As and heavy metals, the BACs for Cd, Zn and Cu were relatively higher than those for As and Pb. This study also carried out a stepwise multiple linear regression analysis to identify the dominant factors influencing metal extraction rates of the paddy soils. Furthermore, daily intakes of As and heavy metals from regularly consumed the rice grain (287 g/day) grown on the contaminated soils by the mining activities were estimated, and found that Cd and As intakes from the rice reached up to 73.7% and 51.8% for maximum allowance levels of trace elements suggested by WHO, respectively. Therefore, long-term consumption of the rice poses potential health problems to residents around the mine, although no adverse health effects have yet been observed.

Sturctural Geometry of the Pyeongchang-Jeongseon Area of the Northwestern Taebaeksan Zone, Okcheon Belt (옥천대 북서부 태백산지역 평창-정선일대 지질구조의 기하학적 형태 해석)

  • Jang, Yirang;Cheong, Hee Jun
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.541-554
    • /
    • 2019
  • The Taebaeksan Zone of the Okcheon Belt is a prominent fold-thrust belt, preserving evidence for overlapped polyphase and diachronous orogenic events during crustal evolution of the Korean Peninsula. The Pyeongchang-Jeongseon area of the northwestern Taebaeksan Zone is fault-bounded on the western Jucheon and southern Yeongwol areas, showing lateral variations in stratigraphy and structural geometries. For better understanding these geological characteristics of the northwestern Taebaeksan Zone, we have studied the structural geometry of the Pyeongchang-Jeongseon area. For this, we have firstly carried out the SHRIMP U-Pb age analysis of the age-unknown sedimentary rock to clarify stratigraphy for structural interpretation. The results show the late Carboniferous to middle Permian dates, indicating that it is correlated to the Upper Paleozoic Pyeongan Supergroup. In addition to this, we interpreted the geometric relationships between structural elements from the detailed field investigation of the study area. The major structure of the northwestern Taebaeksan Zone is the regional-scale Jeongseon Great syncline, having NE-trending hinge with second-order folds such as the Jidongri and Imhari anticlines and the Nambyeongsan syncline. Based on the stereographic and down-plunge projections of the structureal elements, the structural geometry of the Jeongseon Great syncline can be interpreted as a synformal culmination, plunging slightly to the south at its southern area, and north at the northern area. The different map patterns of the northern and southern parts of the study area should be resulted in different erosion levels caused by the plunging hinges. Considering the Jeongseon Great syncline is the major structure that constrains the distribution of the Paleozoic strata of the Pyeongchang and Jeongseon areas, the symmetric repetition of the lower Paleozoic Joseon Supergroup in both limbs should be re-examined by structural mapping of the Hangmae and Hoedongri formations in the Pyeongchang and Jeongseon areas.

Prediction of the Gold-silver Deposits from Geochemical Maps - Applications to the Bayesian Geostatistics and Decision Tree Techniques (지화학자료를 이용한 금${\cdot}$은 광산의 배태 예상지역 추정-베이시안 지구통계학과 의사나무 결정기법의 활용)

  • Hwang, Sang-Gi;Lee, Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.663-673
    • /
    • 2005
  • This study investigates the relationship between the geochemical maps and the gold-silver deposit locations. Geochemical maps of 21 elements, which are published by KIGAM, locations of gold-silver deposits, and 1:1,000,000 scale geological map of Korea are utilized far this investigation. Pixel size of the basic geochemical maps is 250m and these data are resampled in 1km spacing for the statistical analyses. Relationship between the mine location and the geochemical data are investigated using bayesian statistics and decision tree algorithms. For the bayesian statistics, each geochemical maps are reclassified by percentile divisions which divides the data by 5, 25, 50, 75, 95, and $100\%$ data groups. Number of mine locations in these divisions are counted and the probabilities are calculated. Posterior probabilities of each pixel are calculated using the probability of 21 geochemical maps and the geological map. A prediction map of the mining locations is made by plotting the posterior probability. The input parameters for the decision tree construction are 21 geochemical elements and lithology, and the output parameters are 5 types of mines (Ag/Au, Cu, Fe, Pb/Zn, W) and absence of the mine. The locations for the absence of the mine are selected by resampling the overall area by 1 km spacing and eliminating my resampled points, which is in 750m distance from mine locations. A prediction map of each mine area is produced by applying the decision tree to every pixels. The prediction by Bayesian method is slightly better than the decision tree. However both prediction maps show reasonable match with the input mine locations. We interpret that such match indicate the rules produced by both methods are reasonable and therefore the geochemical data has strong relations with the mine locations. This implies that the geochemical rules could be used as background values oi mine locations, therefore could be used for evaluation of mine contamination. Bayesian statistics indicated that the probability of Au/Ag deposit increases as CaO, Cu, MgO, MnO, Pb and Li increases, and Zr decreases.

Heavy Metal Contamination around the Abandoned Au-Ag and Base Metal Mine Sites in Korea (국내 전형적 금은 및 비(base)금속 폐광산지역의 중금속 오염특성)

  • Chon Hyo-Taek;Ahn Joo Sung;Jung Myung Chae
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.101-111
    • /
    • 2005
  • The objectives of this study we to assess the extent and degree of environmental contamination and to draw general conclusions on the fate of toxic elements derived from mining activities in Korea. 인t abandoned mines with four base-metal mines and four Au-Ag mines were selected and the results of environmental surveys in those areas were discussed. In the base-metal mining areas, the Sambo Pb-Zn-barite, the Shinyemi Pb-Zn-Fe, the Geodo Cu-Fe and the Shiheung Cu-Pb-Zn mine, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials, tailings and slag. Furthermore, agricultural soils, stream sediments and stream water near the mines were severely contaminated by the metals mainly due to the continuing dispersion downstream and downslope from the sites, which was controlled by the feature of geography, prevailing wind directions and the distance from the mine. In e Au-Ag mining areas, the Kubong, the Samkwang, the Keumwang and the Kilkok mines, elevated levels of As, Cd, Cu, Pb and Zn were found in tailings and mine dump soils. These levels may have caused increased concentrations of those elements in stream sediments and waters due to direct dis-charge downstream from tailings and mine dumps. In the Au-Ag mines, As would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and mobility of these metals would be enhanced by the effect of oxidation. According to sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. As application of pollution index (PI), giving data on multi-element contamination in soils, over 1.0 value of the PI was found in soils sampled at and around the mining areas.

Geochemical Characteristics of the Cretaceous Jindong Granites in the Southwestern Part of the Gyeongsang Basin, Korea: Focussed on Adakitic Signatures (경상분지 서남부에 분포하는 백악기 진동화강암의 지화학적 특성:아다카이틱(adakitic)한 특성을 중심으로)

  • Wee, Soo-Meen;Choi, Seon-Gyu;Ryu, In-Chang;Shin, Hong-Ja
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.555-566
    • /
    • 2006
  • Major, trace and rare earth elements data of the Cretaceous Jindong granitic rocks were investigated in order to constrain the magma source characteristics and to establish the paleotectonic environment of the southwestern part of the Gyeongsang Basin. Geochemical signatures of the granitic rocks from the study area indicate that all of the rocks have characteristics of calc-alkaline series in the subalkaline field, and progressively shift from metaluminous to peraluminous with differentiation. In the variation diagrams, the overall geochemical features of the granites show systematic variations in major and trace elements. Chondrite normalized REE patterns show generally enriched LREE((La/Yb)c=4.2-12.8) and slight negative to flat Eu anomalies. Rb-Sr isotope data of the Jindong granites show that the whole rock age and Sr initial ratio are $114.6{\pm}9.1Ma$ and 0.70457, respectively. The Sr initial ratio of the Jindong granites is very similar to those of the Creataceous granites from Masan, Kimhae and Busan area($^{87}Sr/^{86}Sr=0.7049-0.707$). These results suggest that the magma have the mantle signature and intruded into the area during the early Cretaceous age. The Jindong granites have higher $Al_{2}O_{3},\;Na_{2}O$, Sr and lower $K_{2}O$, Y concentrations compared with typical calc-alkaline granitic rocks. These adakitic signatures are similar to those of adakitic pluton on Kyushu Island, southwest Japan arc. On the ANK vs. ACNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type, VAG granite. Interpretations of the geochemical characteristics of the granitic rocks favor their emplacement at continental margin during the subduction of Izanagi plate.

The Effects of pH Control on the Leaching Behavior of Heavy Metals within Tailings and Contaminated Soils : Seobo and Cheongyang Tungsten Mine Areas (광미와 오염토양 내 중금속 용출특성에 미치는 pH영향 : 청양과 서보중석광산)

  • 이평구;강민주;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.469-480
    • /
    • 2003
  • Laboratory leaching experiment study carried out to estimate a extent of heavy metals that could be leached out when acid rain(pH 5.0-3.0) and strong acidic solution(pH 2.5-1.0) reacted with tailings and contaminated soils from abandoned metal mines. In slightly to moderately acid conditions(pH 5.0-3.0), As, Pb and Zn dissolutions became significantly increased with decreased pH in tailing, while dissolution of these elements was very limited in contaminated soil. These results suggested that moderately acid rainwater leaches Pb, As and Zn from the tailings, while these elements would remain fixed in contaminated soil. In the pH range of 2.5-1.0(strongly acid condition), Zn, Cd and Cu concentrations of leachate rapidly increased with decreased pH in contaminated soil, while Pb, As and Co dissolutions became importantly increased in tailings. The experimental solubility of Zn. Cd and Cu was very low even at very low pH values(up to pH 1), except for CY4(Cheongyang mine). These can result from an incomplete dissolution or the presence of less soluble mineral phases. So, the solubility of heavy metals depends not only on the pH values of leachate but also on the speciation of metals associated with contaminated soils and tailings. The relative mobility of each element within failings at the pH 5.0-3.0 of the reaction solution was in the order of Pb>Zn>Cd>Co=Cu>As. In case of pH 2.5-1.0 of the reaction solution, the relative mobility of each element within contaminated soils and tailings were in the order of Zn>Cd>Cu>Co>Pb=As for contaminated soils, and Pb>Zn>Cd>hs>Co>Cu for tailings. The obtained results could be useful for assessing the environmental effects and setting up the restoration plan in the areas.

Petrology of the Syenites in Sancheong, Korea (경남 산청 지역의 섬장암에 관한 암석학적 연구)

  • Ok, Eun-Young;Kim, Jong-Sun;Lee, Sang-Won;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.25-54
    • /
    • 2015
  • Syenite is not a common rock, unlike granitic rocks formed the major component of the continental crust. The aim of this study is to decipher the occurrences and detailed descriptive characteristics of the syenite distributed in Sancheong area, and to investigate the petrogenesis of the syenitic magma based on geochemical study. The dominant minerals in syenite are alkali feldspar (usually orthoclase and rarely microcline), plagioclase, amphibole, biotite, and quartz. Syenites are found in a wide variety of colors. The anhedral hornblende and biotite filling the boundary of feldspar and quartz indicate that the hydrous minerals were crystallized lately, and that water was insufficient at the beginning of crystallization in magma. According to the analysis of mineral composition, amphibole in syenite is mostly ferro-edenite, and the pressure is calculated as 3.3~4.9 kb with 11.9~17.3 km of emplacement depth. Biotite and pyroxene are plotted in the region of annite and hedenbergite, respectively. Based on petrochemical studies of major elements, syenite belongs to alkaline series, metaluminous, and I-type. On the other hand, the variation patterns of trace and rare earth elements of syenite differ from the patterns of diorite and granite. In the geochemical characteristics, syenite is different from gabbro-diorite spatially adjacent to syenite, as well as granite. These results suggest that each rock has been generated from the different sources of magma. Additionally, based on the experimental data, the syenitic magma can be formed (1) by the partial melting at a high pressure and dry system, (2) when the initial crystallization minerals to be residue with migration of the residual melts separated from the ascending cotectic magma (3) when fluorine compositions to be plentiful in the protolith and/or at depth of the magma. Based on the petrographic characteristics of the syenite, Sancheong syenitic magma may have been formed by partial melting in a dry system.

Mineralogical and Chemical Characteristics of the Oyster Shells from Korea (국내산 굴 패각의 광물학적 화학적 특성)

  • Ha, Su Hyeon;Cha, Min Kyung;Kim, Kangjoo;Kim, Seok-Hwi;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.149-159
    • /
    • 2017
  • We investigated the mineralogical and chemical characteristics of oyster shell as the possible substitute for the limestone used as an absorbent of $SO_2$ gas. The oyster shells from Taean and Tongyeong were used for the comparison with limestone and those from Boyreong and Yeosu were additionally investigated. XRD results show that all shells are composed of calcite with the exception of the myostracum layer attached to adductor muscle and ligament, which is composed of aragonite. The marine sediments as impurities exist on the surface of shells or as inclusions in the shells. Calcite is the main mineral composition of the shell of barnacle which is also one of the impurities. The oyster shell is composed of three main layers; prismatic, foliated, and chalk. The oyster shell from Tongyeong with the largest shell size, has the smallest thickness of prismatic and foliated layers which contain protein called conchiolin, whereas that from Taean with the smallest shell size has the largest prismatic and foliated layers. The sizes of those two layers of the shells from Boryeong and Yeosu are larger than that from Tongyeong but smaller than Taean. Those differences are supposed to be due to the different growth environments because the oysters from Tongyeong are cultured under the sea while those from Taean are in the tidal zone. The oyster shells generally show higher amount of sulfur and phosphorus than limestone, mainly due to the composition of protein. Some elements such as Mg show significant variations in different layers. As for trace elements, Li shows much higher amount in oyster shells than limestone, suggesting the influence of the composition of the sea water on the formation of the oyster shells.