• Title/Summary/Keyword: Miner

Search Result 350, Processing Time 0.031 seconds

Network Analysis of Prescriptions for Inflammatory Bowel Disease - Preliminary Exploration of Prescriptions Using the K-HERB Database - (염증성 장질환 처방에 대한 네트워크 분석 - K-HERB 데이터베이스를 활용한 예비적 처방 탐색 -)

  • Jae-Yeon Lee;Yu-Gyeong Lee;Yeon-Hwa Lee;Seojung Ha;Bo-In Kwon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.131-150
    • /
    • 2024
  • Objectives : The aim of this study was to perform network analysis and analysis using the K-HERB database on inflammatory bowel disease (IBD), to verify the similarity between the derived networks and existing prescriptions, and to explore the possibility of developing new IBD prescriptions preliminarily. Methods : We conducted a comprehensive literature search on July 6, 2024, utilizing databases such as ScienceON, RISS, and OASIS. Clinical studies assessing the efficacy of herbal medicine in treating Crohn's disease and ulcerative colitis were identified and compiled into a structured database. This dataset, which included related prescriptions and herbal formulations, was subsequently analyzed using NetMiner 4 for centrality and Louvain clustering analyses. We then compared the networks derived from the K-HERB database with existing therapeutic prescriptions to assess their similarity. Results : A total of 24 prescriptions and 66 herbs were identified across the surveyed studies on IBD. Paeoniae Radix Alba(白芍藥) emerged as the most frequently utilized herb for both Crohn's disease and ulcerative colitis. Prominent herb combinations included Paeoniae Radix Alba-Angelicae Sinensis Radix (白芍藥-當歸), Angelicae Sinensis Radix-Coptidis Rhizoma (當歸-黃連), and Coptidis Rhizoma-Scutellariae Radix (黃連-黃芩) for ulcerative colitis. Centrality analysis revealed that Poria cocos (茯苓) and Paeoniae Radix Alba (白芍藥) had high centrality in the Crohn's disease, while Angelicae Sinensis Radix (當歸) and Paeoniae Radix Alba (白芍藥) had high centrality in the ulcerative colitis, indicating their prominent roles within the networks. Cohesion analysis resulted in 7 networks for Crohn's disease and 16 networks for ulcerative colitis. After excluding networks with a single herb, three networks related to Crohn's disease and two related to ulcerative colitis were examined using the K-HERB database. Among the 14 derived prescriptions for Crohn's disease and seven for ulcerative colitis, all except Oryeong-san (五苓散) were non-traditional in the context of IBD treatment. Conclusion : This preliminary study may provide a basis for the understanding and application of herbal prescriptions for IBD based on network analysis and the K-HERB database.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques (소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스)

  • Cho, In-Dong;Kim, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.127-138
    • /
    • 2011
  • The core service of most research portal sites is providing relevant research papers to various researchers that match their research interests. This kind of service may only be effective and easy to use when a user can provide correct and concrete information about a paper such as the title, authors, and keywords. However, unfortunately, most users of this service are not acquainted with concrete bibliographic information. It implies that most users inevitably experience repeated trial and error attempts of keyword-based search. Especially, retrieving a relevant research paper is more difficult when a user is novice in the research domain and does not know appropriate keywords. In this case, a user should perform iterative searches as follows : i) perform an initial search with an arbitrary keyword, ii) acquire related keywords from the retrieved papers, and iii) perform another search again with the acquired keywords. This usage pattern implies that the level of service quality and user satisfaction of a portal site are strongly affected by the level of keyword management and searching mechanism. To overcome this kind of inefficiency, some leading research portal sites adopt the association rule mining-based keyword recommendation service that is similar to the product recommendation of online shopping malls. However, keyword recommendation only based on association analysis has limitation that it can show only a simple and direct relationship between two keywords. In other words, the association analysis itself is unable to present the complex relationships among many keywords in some adjacent research areas. To overcome this limitation, we propose the hybrid approach for establishing association network among keywords used in research papers. The keyword association network can be established by the following phases : i) a set of keywords specified in a certain paper are regarded as co-purchased items, ii) perform association analysis for the keywords and extract frequent patterns of keywords that satisfy predefined thresholds of confidence, support, and lift, and iii) schematize the frequent keyword patterns as a network to show the core keywords of each research area and connecting keywords among two or more research areas. To estimate the practical application of our approach, we performed a simple experiment with 600 keywords. The keywords are extracted from 131 research papers published in five prominent Korean journals in 2009. In the experiment, we used the SAS Enterprise Miner for association analysis and the R software for social network analysis. As the final outcome, we presented a network diagram and a cluster dendrogram for the keyword association network. We summarized the results in Section 4 of this paper. The main contribution of our proposed approach can be found in the following aspects : i) the keyword network can provide an initial roadmap of a research area to researchers who are novice in the domain, ii) a researcher can grasp the distribution of many keywords neighboring to a certain keyword, and iii) researchers can get some idea for converging different research areas by observing connecting keywords in the keyword association network. Further studies should include the following. First, the current version of our approach does not implement a standard meta-dictionary. For practical use, homonyms, synonyms, and multilingual problems should be resolved with a standard meta-dictionary. Additionally, more clear guidelines for clustering research areas and defining core and connecting keywords should be provided. Finally, intensive experiments not only on Korean research papers but also on international papers should be performed in further studies.

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Cheongpung Area (기반암에 따른 청풍지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Song, Yeung-Sang;Lee, Jang-Jon
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.675-687
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics of the stream sediments in the Cheongpung area. So that we can understand the natural background and predict the prospects of geochemical disaster, if any. We collected the stream sediments samples by wet sieving along the primary channels and slow dried the collected samples in the laboratory and ground them to pass a 200 mesh using an alumina mortar and pestle for chemical analysis. Miner-alogical characteristics, major, trace and rare earth elements were determined by XRD, XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological group of stream sediments, the studied area was grouped into granitic gneiss area, metatectic gneiss area, Dado tuff area, Yuchi conglomerate area, and Neungju flow area in the Cheongpung area. Contents of major elements for the stream sediments in the Cheongpung area were $SiO_2\;47.31{\sim}72.81\;wt.%,\;A1_2O_3 \;11.26{\sim}21.88\;wt.%,\;Fe_2O_3\;2.83{\sim}8.39\;wt.%,\;CaO\;0.34{\sim}7.54\;wt.%,\;MgO\; 0.55{\sim}3.59\;wt.%,\;K_2O\;1.71{\sim}4.31\;wt.%,\;Na_2O\;0.56{\sim}2.28\;wt.%,\;TiO_2\;0.46{\sim}1.24\;wt.%,\;MnO\;0.04{\sim}0.27\;wt.%,\;P_2O_5\;0.02{\sim}0.45\;wt.%$. The con-tents of trace and rare earth elements for the stream sediments were $Ba\;700ppm{\sim}8990ppm,\;Be\;1.0{\sim}3.50ppm,\;Cu\;6.20{\sim}60ppm,\;Nb\;12{\sim}28ppm,\;Ni\;4.4{\sim}61ppm,\;Pb\;13{\sim}34ppm,\;Sr\;65{\sim}787ppm,\;V\;4{\sim}98ppm,\;Zr\;32{\sim}164ppm,\;Li\;21{\sim}827ppm,\;Co\;3.68{\sim}65ppm,\;Cr\;16.7{\sim}409ppm,\;Cs\;2.72{\sim}37.1ppm,\;Hf\;4.99{\sim}49.2ppm,\;Rb\;71.9{\sim}649ppm,\;Sb\;0.16{\sim}5.03ppm,\;Sc\;4.97{\sim}52ppm,\;Zn\;26.3{\sim}375ppm,\;Ce\;60.6{\sim}373ppm,\;Eu\;0.82{\sim}6ppm,\;Yb\;0.71{\sim}10ppm$.

A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps (사용자 리뷰 마이닝을 결합한 협업 필터링 시스템: 스마트폰 앱 추천에의 응용)

  • Jeon, ByeoungKug;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.1-18
    • /
    • 2015
  • Collaborative filtering(CF) algorithm has been popularly used for recommender systems in both academic and practical applications. A general CF system compares users based on how similar they are, and creates recommendation results with the items favored by other people with similar tastes. Thus, it is very important for CF to measure the similarities between users because the recommendation quality depends on it. In most cases, users' explicit numeric ratings of items(i.e. quantitative information) have only been used to calculate the similarities between users in CF. However, several studies indicated that qualitative information such as user's reviews on the items may contribute to measure these similarities more accurately. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's reviews can be regarded as the informative source for identifying user's preference with accuracy. Under this background, this study proposes a new hybrid recommender system that combines with users' review mining. Our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and his/her text reviews on the items when calculating similarities between users. In specific, our system creates not only user-item rating matrix, but also user-item review term matrix. Then, it calculates rating similarity and review similarity from each matrix, and calculates the final user-to-user similarity based on these two similarities(i.e. rating and review similarities). As the methods for calculating review similarity between users, we proposed two alternatives - one is to use the frequency of the commonly used terms, and the other one is to use the sum of the importance weights of the commonly used terms in users' review. In the case of the importance weights of terms, we proposed the use of average TF-IDF(Term Frequency - Inverse Document Frequency) weights. To validate the applicability of the proposed system, we applied it to the implementation of a recommender system for smartphone applications (hereafter, app). At present, over a million apps are offered in each app stores operated by Google and Apple. Due to this information overload, users have difficulty in selecting proper apps that they really want. Furthermore, app store operators like Google and Apple have cumulated huge amount of users' reviews on apps until now. Thus, we chose smartphone app stores as the application domain of our system. In order to collect the experimental data set, we built and operated a Web-based data collection system for about two weeks. As a result, we could obtain 1,246 valid responses(ratings and reviews) from 78 users. The experimental system was implemented using Microsoft Visual Basic for Applications(VBA) and SAS Text Miner. And, to avoid distortion due to human intervention, we did not adopt any refining works by human during the user's review mining process. To examine the effectiveness of the proposed system, we compared its performance to the performance of conventional CF system. The performances of recommender systems were evaluated by using average MAE(mean absolute error). The experimental results showed that our proposed system(MAE = 0.7867 ~ 0.7881) slightly outperformed a conventional CF system(MAE = 0.7939). Also, they showed that the calculation of review similarity between users based on the TF-IDF weights(MAE = 0.7867) leaded to better recommendation accuracy than the calculation based on the frequency of the commonly used terms in reviews(MAE = 0.7881). The results from paired samples t-test presented that our proposed system with review similarity calculation using the frequency of the commonly used terms outperformed conventional CF system with 10% statistical significance level. Our study sheds a light on the application of users' review information for facilitating electronic commerce by recommending proper items to users.

Effect of rice seed dressing with imidacloprid WS on early occurring rice insect pests (본답 초기해충의 생력방제를 위한 imidacloprid의 종자분의 효과)

  • Choi, Byung-Ryul;Yoo, Jae-Ki;Lee, Sang-Guei;Lee, Jeong-Oon
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 1998
  • A series of experiments were carried out to determine the effect of seed dressing application of chemicals on the early occurring rice insect pests. The number of small brown planthopper adults per 3hills in seed-dressing plot of Imidacloprid WS (Im WS) was 1.6 and its control efficacy was over 90%, compared with that of untreated plot. Rice water weevil was observed in the density of 8.8 larvae per 5 hills seed-dressed Im WS plots(showing 95.5% of control efficacy). Control efficacy of Im WS and Im GR against adult weevils lasted for 26 days after treatment and was higher than that of Carbofuran GR. Rates of injured stems by rice stem maggot and injured leaves by rice leaf miner were 3% and 3.7% in Im WS treatment plot respectively. Seed germination rate after seed dressing with recommended dosage (3 g/seed kg) of Im WS was 71 % on the 1st day and increased on 5th day up to that of untreated seed. The residual amount of Im in seed dressing plot was 0.11 ppm in rice roots and 0.05 ppm in leaves on the 40th day after treatment. Residual effect of Im WSI sustained for 50 days with over 95% insecticidal effect for the rice water weevil and over 90% for the brown planthopper. Quantity of the chemical applied in the field was calculated as 0.084 kg a.i./ha in seed dressing and 0.3 kg a.i./ha in seed box treatment, respectively It took 1 hour to treat insecticide by seed dressing, 2.5 hours by seed box applying, and 3.6 hours by water surface releasing per 990 $m^2$.

  • PDF

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.

Prediction of commitment and persistence in heterosexual involvements according to the styles of loving using a datamining technique (데이터마이닝을 활용한 사랑의 형태에 따른 연인관계 몰입수준 및 관계 지속여부 예측)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.69-85
    • /
    • 2016
  • Successful relationship with loving partners is one of the most important factors in life. In psychology, there have been some previous researches studying the factors influencing romantic relationships. However, most of these researches were performed based on statistical analysis; thus they have limitations in analyzing complex non-linear relationships or rules based reasoning. This research analyzes commitment and persistence in heterosexual involvement according to styles of loving using a datamining technique as well as statistical methods. In this research, we consider six different styles of loving - 'eros', 'ludus', 'stroge', 'pragma', 'mania' and 'agape' which influence romantic relationships between lovers, besides the factors suggested by the previous researches. These six types of love are defined by Lee (1977) as follows: 'eros' is romantic, passionate love; 'ludus' is a game-playing or uncommitted love; 'storge' is a slow developing, friendship-based love; 'pragma' is a pragmatic, practical, mutually beneficial relationship; 'mania' is an obsessive or possessive love and, lastly, 'agape' is a gentle, caring, giving type of love, brotherly love, not concerned with the self. In order to do this research, data from 105 heterosexual couples were collected. Using the data, a linear regression method was first performed to find out the important factors associated with a commitment to partners. The result shows that 'satisfaction', 'eros' and 'agape' are significant factors associated with the commitment level for both male and female. Interestingly, in male cases, 'agape' has a greater effect on commitment than 'eros'. On the other hand, in female cases, 'eros' is a more significant factor than 'agape' to commitment. In addition to that, 'investment' of the male is also crucial factor for male commitment. Next, decision tree analysis was performed to find out the characteristics of high commitment couples and low commitment couples. In order to build decision tree models in this experiment, 'decision tree' operator in the datamining tool, Rapid Miner was used. The experimental result shows that males having a high satisfaction level in relationship show a high commitment level. However, even though a male may not have a high satisfaction level, if he has made a lot of financial or mental investment in relationship, and his partner shows him a certain amount of 'agape', then he also shows a high commitment level to the female. In the case of female, a women having a high 'eros' and 'satisfaction' level shows a high commitment level. Otherwise, even though a female may not have a high satisfaction level, if her partner shows a certain amount of 'mania' then the female also shows a high commitment level. Finally, this research built a prediction model to establish whether the relationship will persist or break up using a decision tree. The result shows that the most important factor influencing to the break up is a 'narcissistic tendency' of the male. In addition to that, 'satisfaction', 'investment' and 'mania' of both male and female also affect a break up. Interestingly, while the 'mania' level of a male works positively to maintain the relationship, that of a female has a negative influence. The contribution of this research is adopting a new technique of analysis using a datamining method for psychology. In addition, the results of this research can provide useful advice to couples for building a harmonious relationship with each other. This research has several limitations. First, the experimental data was sampled based on oversampling technique to balance the size of each classes. Thus, it has a limitation of evaluating performances of the predictive models objectively. Second, the result data, whether the relationship persists of not, was collected relatively in short periods - 6 months after the initial data collection. Lastly, most of the respondents of the survey is in their 20's. In order to get more general results, we would like to extend this research to general populations.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Analysis of Journal of Dental Hygiene Science Research Trends Using Keyword Network Analysis (키워드 네트워크 분석을 활용한 치위생과학회지 연구동향 분석)

  • Kang, Yong-Ju;Yoon, Sun-Joo;Moon, Kyung-Hui
    • Journal of dental hygiene science
    • /
    • v.18 no.6
    • /
    • pp.380-388
    • /
    • 2018
  • This research team extracted keywords from 953 papers published in the Journal of Dental Hygiene Science from 2001 to 2018 for keyword and centrality analyses using the Keyword Network Analysis method. Data were analyzed using Excel 2016 and NetMiner Version 4.4.1. By conducting a deeper analysis between keywords by overall keyword and time frame, we arrived at the following conclusions. For the 17 years considered for this study, the most frequently used words in a dental science paper were "Health," "Oral," "Hygiene," and "Hygienist." The words that form the center by connecting major words in the Journal of Dental Hygiene through the upper-degree centrality words were "Health," "Dental," "Oral," "Hygiene," and "Hygienist." The upper betweenness centrality words were "Dental," "Health," "Oral," "Hygiene," and "Student." Analysis results of the degree centrality words per period revealed "Health" (0.227), "Dental" (0.136), and "Hygiene" (0.136) for period 1; "Health" (0.242), "Dental" (0.177), and "Hygiene" (0.113) for period 2; "Health" (0.200), "Dental" (0.176), and "Oral" (0.082) for period 3; and "Dental" (0.235), "Health" (0.206), and "Oral" (0.147) for period 4. Analysis results of the betweenness centrality words per period revealed "Oral" (0.281) and "Health" (0.199) for period 1; "Dental" (0.205) and "Health" (0.169) for period 2, with the weight then dispersing to "Hygiene" (0.112), "Hygienist" (0.054), and "Oral" (0.053); "Health" (0.258) and "Dental" (0.246) for period 3; and "Oral" (0.364), "Health" (0.353), and "Dental" (0.333) for period 4. Based on the above results, we hope that further studies will be conducted in the future with diverse study subjects.