• Title/Summary/Keyword: Mine opening

Search Result 24, Processing Time 0.021 seconds

Rock fracturing mechanisms around underground openings

  • Shen, Baotang;Barton, Nick
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.35-47
    • /
    • 2018
  • This paper investigates the mechanisms of tunnel spalling and massive tunnel failures using fracture mechanics principles. The study starts with examining the fracture propagation due to tensile and shear failure mechanisms. It was found that, fundamentally, in rock masses with high compressive stresses, tensile fracture propagation is often a stable process which leads to a gradual failure. Shear fracture propagation tends to be an unstable process. Several real case observations of spalling failures and massive shear failures in boreholes, tunnels and underground roadways are shown in the paper. A number of numerical models were used to investigate the fracture mechanisms and extents in the roof/wall of a deep tunnel and in an underground coal mine roadway. The modelling was done using a unique fracture mechanics code FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that both tensile and shear fracturing may occur in the vicinity of an underground opening. Shallow spalling in the tunnel wall is believed to be caused by tensile fracturing from extensional strain although no tensile stress exists there. Massive large scale failure however is most likely to be caused by shear fracturing under high compressive stresses. The observation that tunnel spalling often starts when the hoop stress reaches $0.4^*UCS$ has been explained in this paper by using the extension strain criterion. At this uniaxial compressive stress level, the lateral extensional strain is equivalent to the critical strain under uniaxial tension. Scale effect on UCS commonly believed by many is unlikely the dominant factor in this phenomenon.

A Study on the Optimal Installation of Ducted Fan Ventilation System in Long Mine Airways - Focused on the Wall Separation Distance and the Gap Length between Ducts (장대 광산갱도내 풍관 접속 통기선풍기 최적 설치 방안연구 - 벽면과 풍관간의 이격거리 중심으로)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.12-25
    • /
    • 2017
  • In local underground mines heavily depending on the natural ventilation, ducted fan auxiliary ventilation system is strongly recommended instead of the total mine ventilation system requiring large capital and operating costs. Optimizing the installation of ducted fans in series in long large-opening mines is required to assure the economy and efficiency of the ventilation system. The two most critical design parameters for optimization are the wall separation distance and gap length between adjoining ducts. This study aims at deriving the optimal values for those two parameters concerning the economic and environmental aspects through the extensive CFD analysis, which minimizes pressure loss, leakage and entrainment of the contaminated air in the gap space. The ranges of the wall separation distance and gap length for study are selected by taking into consideration the existing recommendations and guidelines. The ultimate goal is to optimize the auxiliary ventilation system using ducted fans in series to provide a reliable and efficient solution to maintain clean and safe workplace environment in local long underground mines.

The Study of Structural Control and Relative Photogeological Interpretation on Shiheung Mine Region (시흥군(始興郡) 서면일대(西面一帶)의 광화구제구조(鑛化規制構造)와 항공사진해석결과(航空寫眞解析結果)와의 비교연구(比較硏究))

  • Chi, Jeong Mahn;Ryuu, Byeoonghwa
    • Economic and Environmental Geology
    • /
    • v.3 no.4
    • /
    • pp.199-222
    • /
    • 1970
  • One of the biggest sulfide metallic (Cu, Pb, Zn) ore deposits of South Korea is located in the area of Seo-myeon, Shiheung-gun, Gyeonggi-do. Geology of the region is mostly composed of metasediments of biotite schist, graphite schist, injection gneiss, sericite schist, limesilicate and quartzite from bottom, those are applicable to so-called Yeoncheon System of Pre-Cambrian, and granodiorite, quartz porphyry, basic dykes are outcroped in a small scope as intrusives. The origin of the ore deposit is pyrometasomatic contact deposits due to hydrothermal replacement and the ore bodies are imbedded in lower bed of limesilicate formation as impregnation and ore minerals are galena, sphalerite, marmatite, chalcopyrite, bornite, chalcocite, covellite, and the later two minerals are both hypogene and supergene. Gangue minerals are mostly skarn minerals those hornblende, diopside, epidote, hedenbergite, chlorite, garnet and quartz except primary calcite and quartz. Boundary plane (NS strike) between schists and limesilicate seemed to be primary opening of ore solution and fractures bearing $N50^{\circ}{\sim}80^{\circ}W$ are secondary structural control for localization of ore minerals and the third structural controls are both irregular gashes and schistosity in small scale. Photogeological study was carried with vertical aerial photo scaled 1: 38,000 and enlarged 1 : 10,000 under stereoscope. The study on the area convinced the fact that the geologic boundaries between rocks, limesilicates and quartzites, are traced easily by their typical topographic feature and drainage, and the main fracture patterns which derived from the result of fracture traces, that photogeologic lineament observed under stereoscope, are those bearing (1) $N20^{\circ}W$, (2) $N58^{\circ}W$, (3) $N76^{\circ}W$, (4) EW, (5) $N20^{\circ}W$, (6) $N62^{\circ}W$, (7) $N77^{\circ}W$. Among the written fractures, (5) (not schistosity, in case of fault) (6) (7) are post-mineral faults and others are pre-mineral faults and others are pre-mineral structures, and (2) (3) (6) (7) are coincided with statistical figure of 208 fractures surveyed in underground. By the result of the study, mineralized zone, are presumed to extend north and southward, total length about 4km.

  • PDF

A Study on the Effect of Underground Openings on the Stability of Surface Structures Using Scaled Model Tests (지하 채굴적이 지표 구조물의 안정성에 미치는 영향에 관한 모형실험 연구)

  • 김종우;전석원;서영호
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.43-53
    • /
    • 2004
  • In this study, scaled-model tests were performed to investigate the effect of underground openings on the stability of surface structure around the abandoned coal mine areas. Four types of test models which had respectively different depths of openings and different ground reinforcement conditions were introduced, where the modelling materials were the mixture of sand, plaster and water. The model with deep openings were turned out more stable to the structure than the model with shallow ones, because the crack-initiating pressure of the former was 2.5 times as much as that of the latter. The models with ground reinforcement were also fumed out more stable than the model without reinforcement, because the crack-initiating pressure of the former was 2.4 times as much as that of the latter. Subsidence profiles were analysed to find the characteristics of slope and curvature, and the model with large reinforcement were turned out the most stable.