• Title/Summary/Keyword: Mine filling

Search Result 81, Processing Time 0.026 seconds

The gob-side entry retaining with the high-water filling material in Xin'an Coal Mine

  • Li, Tan;Chen, Guangbo;Qin, Zhongcheng;Li, Qinghai;Cao, Bin;Liu, Yongle
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.541-552
    • /
    • 2020
  • With the increasing tension of current coal resources and the increasing depth of coal mining, the gob-side entry retaining technology has become a preferred coal mining method in underground coal mines. Among them, the technology of the gob-side entry retaining with the high-water filling material can not only improve the recovery rate of coal resources, but also reduce the amount of roadway excavation. In this paper, based on the characteristics of the high-water filling material, the technological process of gob-side entry retaining with the high-water filling material is introduced. The early and late stress states of the filling body formed by the high-water filling materials are analyzed and studied. Taking the 8th floor No.3 working face of Xin'an coal mine as engineering background, the stress and displacement of surrounding rock of roadway with different filling body width are analyzed through the FLAC3D numerical simulation software. As the filling body width increases, the supporting ability of the filling body increases and the deformation of the surrounding rock decreases. According to the theoretical calculation and numerical simulation of the filling body width, the filling body width is finally determined to be 3.5m. Through the field observation, the deformation of the surrounding rock of the roadway is within the reasonable range. It is concluded that the gob-side entry retaining with the high-water filling material can control the deformation of the surrounding rock, which provides a reference for gob-side entry retaining technology with similar geological conditions.

A Study on Mineralization of the Cheonabo Gold Mine

  • Yoo, Jae shin
    • Journal of the speleological society of Korea
    • /
    • v.42 no.2
    • /
    • pp.33-40
    • /
    • 1995
  • The Cheonbo gold mine is located approximately 8km northeast of Cheonan in southern part of Korean peninsula. The Cheonbo gold deposits are composed of parallel-filling quartz veins that are associated wi th the Cheonan granite which intruded the surrounding Precombrian metamorphic country rocks. Rb/Sr date of the granitic intrusion is 170${\pm}$0. 3m.y., suggesting a middle Jurassic age for gold mineralization.

  • PDF

A study on mineralization of Cheonbo gold mine

  • Yoo, Jae shin
    • Journal of the Speleological Society of Korea
    • /
    • v.34 no.35
    • /
    • pp.105-112
    • /
    • 1993
  • The Cheonbo gold mine is located approximately 8km northeast of Cheonan in southern part of Korean peninsula. The Cheonbo gold deposits are composed of parallel-filling quartz veins that are associated with the Cheonan granite which intruded the surrounding Precombrian metamorphic country rocks. Rb/sr date of the granitic intrusion is 170$\pm$0.3m.y., suggesting a middle Jurassic age for gold materialization.

  • PDF

A Study on the Protection Method of Mine Site Slope Using Mine Green Framework (식생 방틀공법을 이용한 광산사면 보호공법에 관한 연구)

  • Choi, Gwang-Su;Kim, Tae-Heok;Kwon, Hyun-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • This study presents Mine Green Framework(M.G.F) which can protect the slope of rock and tailings. M.G.F method provides the fiber frame which helps the growth of the plant in the barren site like mined rock slope. M.G.F system consists of the polyester fiber mat, soil, seeds and anchors for the attachment. The optimum rate of filling materials was figured out by many germination tests in order to improve the effect of filling materials and the optimum rate of filling materials was applied in four test sites individually. High rooting rate over 70% was confirmed in all field tests. Especially the moisturizer was the most important component of filling materials and it could make the better condition for the plants.

Development of the Environmentally Friendly Filling Material for the Underground Cavities using the Rock-dust and an Assessment on Filling and Material Characteristics (석분토를 이용한 지하공동의 친환경적 충전재 개발과 충전 및 재료특성 평가)

  • Ma Sang-Joon;Kim Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.35-44
    • /
    • 2005
  • Recently, underground cavities such as limestone cavity and abandoned mine give rise to a lot of damage in SOC facilities. But there are many difficult problems such as delay of the working terms and enormous economic losses in finding a new method and changing construction design. In this study, a new filling material for underground cavities was developed using the stone-dust classified as industry waste polluting environment. As a result of test, filling material properties was that a compressive strength was $34{\~}60\;kgf/cm^2$, a change ratio in length was $0.268{\~}0.776\%$ and water absorption was $34.3{\~}46.9\%$. Also as a result of suspended mass test and pH test, it was confirmed that the developed filling material has a characteristic of non-separating in water and it was an environmentally friendly material.

Porosity and Strength Properties of Permeable Concrete Using Limestone Mine Wastes as Coarse Aggregate for Concrete (폐석회석 굵은골재를 사용한 투수 콘크리트의 공극 및 강도특성)

  • 최연왕;임학상;정지승;문대중;신화철
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • Limestone mine waste was used as a aggregate far permeable concrete. Void ratio, continuous void ratio, coefficient of permeability, compressive strength and flexural strength of concrete were measured and then the relationship between porosity and strength properties was investigated. Void ratio, continuous void ratio and strength properties of permeable concrete were greatly influenced by the grain size of aggregate and void filling ratio in comparison with the containing ratio of limestone mine waste. Furthermore, void ratio showed a good relation with continuous void ratio, and porosity of permeable concrete indicated a good relation with strength properties also. The coefficient of permeability of permeable concrete using limestone waste was over 0.2 cm/sec and was excellent result in comparison with normal concrete. Therefore, it could be expected that the limestone mine waste would be utilized as aggregate for pavement concrete, green concrete and water resource specie concrete in the results of this study.

A study on the rheological properties of superfluidity self compacting concrete utilizing tailings from the tungsten mine (광산광미를 활용한 초유동 자기충전 콘크리트의 유변학적 특성 연구)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook;Lee, Kwang-Myong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.89-92
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder of superfluidity self-compacting concrete. The experimental tests for slump-flow, time required to reach 500mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The result of this study, in case of superfluidity self-compacting concrete mixed with tailings, slump-flow was decreased with increasing mixing ratio. But time required to reach 500mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were satisfied a prescribed range.

  • PDF

A Study on the Urethane Foam Material Characteristics and Appropriate Soil Covering for Mine Reclamation Emergency Action through Atificial Fire Test (인공 화재 실험을 통한 광해방지 응급조치용 우레탄 폼 재료 특성 및 적정 복토에 관한 연구)

  • Kim, Soo Lo;Park, Jay Hyun;Lee, Jin Soo;Yang, In Jae
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.287-296
    • /
    • 2020
  • Mine Reclamation Project is being carried out with the aim of ensuring a sustainable green living and helping to develop eco-friendly mines by analyzing, removing and preventing the harmful factors. Mines developed during the japanese colonial period and mining boom period are still not repaired throughout the country, and from these scattered risks, public safety is worth pursuing as a top priority. The project that is close to public safety in the mine recalmation project is an emergency treatment, and the most widely used method is a filling method similar to the ground subsidence prevention. If dangerous mine cavity or tunnels are located in the mountains, charging with existing materials may not be possible, or unreasonable cases may occur, and new methods of technological development are required. Emergency actions should be carried out safely and efficiently to prevent the loss of precious people's lives on the hiking paths adjacent to dangerous mining sites. In these field conditions, urethane foam materials may be an alternative. In this study, the applicability of urethane foam materials in mining was reviewed through overseas cases. It was also tested on the appropriate depth of top soil for the protection of urethane foam materials through forest fire simulation test. The test result show that approximately 15cm of soil covering (recommended 20cm over) was suitable for maintaining the function of foam materials from forest fires.

A Study on the Development of Rapidly Hardening Grouting Method for the Effective Filling in the Underground Cavity (지하공동의 효율적 충전을 위한 급결 충전 그라우트공법개발에 관한 연구)

  • Kim, Soo-Lo;Kim, Tae-Heok;Shin, Dong-Chun;Kwon, Hyun-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.534-544
    • /
    • 2009
  • The collapse of the underground cavity can cause the abrupt local subsidence of the ground surface. It can be hazardous to the stability of road and building for human activity. Therefore it is necessary to develop reinforcement methods for the filling of the underground cavity. This study was executed to improve the material quality and systems to fill the calcium-aluminate mineral $(C_{12}A_7)$ environmentally, and minimize the loss of filling materials for the steep underground cavity. Filling material which was developed in this study is composed of rapid hardening material and additives. The developed material had rapid hardening and non-separation ability in the water cavity condition, so it made the effective underground dam in the cavity with prevention of material loss when it was poured in the water cavity. Results of heavy metal leaching test for environmental assessment showed that it was environmentally suiTable material for the filling in the mine cavity.

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou;Vahab, Sarfarazi;Hadi, Haeri;Amir Aslan, Naderi;Mohammad Fatehi, Marji;Fei, Wu
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.337-351
    • /
    • 2023
  • In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).