• Title/Summary/Keyword: Mine filling

Search Result 81, Processing Time 0.031 seconds

Stability analysis of roof-filling body system in gob-side entry retained

  • Jinlin Xin;Zizheng Zhang;Weijian Yu;Min Deng
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • The roof-filling body system stability plays a key role in gob-side entry retained (GER). Taking the GER of the 1103 belt transportation roadway in Heilong Coal Mine as engineering background, stability analysis of roof-filling body system was conducted based on the cusp catastrophe theory. Theoretical results showed that the current design parameters of 1103 belt transportation roadway could ensure the roof-filling body system stable during the resistance-increasing support stage of the filling body and the stable support stage of the filling body. Moreover, a verified global numerical model in FLAC3D was established to analyze the failure characteristics including surrounding rock deformation, stress distribution, and plastic zone. Numerical simulation indicated that the width-height ratio of the filling body had a great influence on the stability of the roof-filling body system. When the width-height ratio was greater than 0.62, with the decrease of the width-height ratio, the peak stress of the filling body gradually decreased; when the width-height ratio was greater than 0.92, as the distance to the roadway increased, the roof stress increased and then decreased. The theoretical analysis and numerical simulation findings in this study provide a new research method to analyze the stability of the roof-filling body system in GER.

Study on Displacement Behavior of Abandoned Mine Goaf Cave According to Filling Factor (충전율에 따른 폐광산 채굴적 공동의 변위거동에 관한 연구)

  • Kim, Dong-Rak;Seo, In-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.151-156
    • /
    • 2011
  • The domestic mine development community the countermeasure establishment is insufficient about ground sinkage, not only the mine which is a in line is partial from the mine of the most which has become the rest mine and abandoned mine or the index sinkage occurs. The ground sinkage which occurs from the abandoned mine area most after operation is stopped, a long time passes and accurately predicts an occurrence location and a time with the residual sinkage which occurs, is difficult. Underground goaf of the abandoned mine and the closed shaft When considering the potentiality which causes the instability of ground, is a possibility of reaching a damage in the ground infrastructure or life. The underground shaft which is formed specially with mine development and goaf operates with the obstacle factor in the development project of the mine area, the ground sinkage which is caused by with sinkage, operates with the large safety accident occurrence factor where the important infrastructure of the railroad, road, residential area etc. is damaged. Therefore, In this paper, the goaf cave of the abandoned mine area, for the displacement behavior according to the filling factor of the material is to analyze the numerical analysis.

A Study on the Model Test for Mine Filling Using Coal Ash (석탄회를 이용한 갱내충전모형시험 연구)

  • Lee, Sang-Eun;Park, Se-Jun;Kim, Hak-Sung;Jang, Hang-Suk;Kim, Tae-Heok
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.449-461
    • /
    • 2012
  • Coal ash generated from thermal power plants is planned to use for mine filling in order to prevent subsidence of the ground. In according, the basic physical properties and flow characteristics were grasped using coal ash from generated Yeongdong thermal power plant, and hydraulic filling experiments were performed a total of eight times by manufacturing the model of 1 inclined shaft in Hanbo coal mine. The specific gravity of coal ash is 2.34, and the result of particle size analysis belongs to silty sand (SM). Coal ash of weight ratio of 60% was used in the filling experiments of the model, since liquefaction have shown in coal ash less than weight ratio of 70% from the result of slump and flow test. The outlet should be located at the bottom of the inclined and vertical shaft, this was favorable way in improving the filling efficiency from the experiment results regardless of groundwater exists.

A Study on the Model Test for Pneumatic Mine-Filling (공압식 갱내충전을 위한 모형실험 연구)

  • Yang, In-Jae;Shin, Dong-Choon;Yoon, Byung-Sik;Mok, Jin-Ho;Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.449-463
    • /
    • 2014
  • There are many case studies and application cases in abandoned mines for hydraulic filling method filled by slurry or paste form, but research on the pneumatic filling is not applied in Korea. The damage of steel pipe is occurred by wear due to the flow of filling material in the bent area of steel pipe in traditional pneumatic filling method. In this study, the new pneumatic filling method was developed using a newly devised improved nozzle to improve the above problem. The model test for mine filling was performed in the laboratory for the simulated accessible or inaccessible mine cavities, and the filling efficiency by the results obtained from the test was calculated. The filling efficiency was analyzed from the variation of outlet angle, feed rate and grain size of sand in model test of simulated accessible mine cavity. The superiority of improved pneumatic filling method was proved through the analysis of filling efficiency by the results obtained from each model tests of gravitational, traditional, and improved filling method in simulated inaccessible mine cavity.

Numerical Analysis on Effective Countermeasure for Ground Subsidence due to Mining Hazard (광해로 인한 지반침하의 효율적인 보강방안에 관한 수치해석)

  • Hong, Won-Pyo;Lee, Jae-Ho;Hur, Se-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • When the structure such as roadway, railway are constructed on abandoned coal mine area, the countermeasure to prevent settlements is necessary. In this study, numerical analyses are performed to evaluate the effect of the various countermeasures. As a results, the method which is filling the coal mine is more effective than that of reinforcing the ground above the coal mine. The ground settlement decreases hyperbolically with increasing the filling ratio of the coal mine. Also, the relationship between the filling ratio and the settlement reduction ratio is discussed precisely.

  • PDF

Development of USLExls and its Application for the Analysis of the Impact of Soil-Filling Work on Soil Loss (USLExls를 이용한 복토법에 따른 필지 단위 토양유실량 분석)

  • Kim, Sorae;Yu, Chan;Lee, Sang-Whan;Ji, Won-Hyun;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.109-125
    • /
    • 2017
  • This study aimed to develop a parcel-unit soil loss estimation tool embedded in Excel worksheet, USLExls, required for the design of contaminated farmland restoration project and to analyze the impact of the project carried out soil-filling work on soil loss. USLE method was adopted for the estimation of average annual soil loss in a parcel unit, and each erosivity factor in the USLE equation was defined through the review of previous studies. USLExls was implemented to allow an engineer to try out different combinations just by selecting one among the popular formulas by each factor at a combo box and to simply update parameters by using look-up tables. This study applied it to the estimation of soil loss before and after soil-filling work at Dong-a project area. The average annual soil loss after the project increased by about 2.4 times than before on average, and about 60 % of 291 parcels shifted to worse classes under the classification criteria proposed by Kwak (2005). Although average farmland steepness was lower thanks to land grading work, the soil loss increased because the inappropriate texture of the cover soil induced the soil erosion factor K to increase from 0.33 before to 0.78 after the soil-filling work. The results showed that the selection of cover soil for soil-filling work should be carefully considered in terms soil loss control and the estimation of change in soil loss should be mandatory in planning a contaminated farmland restoration project.

Development of Tip Device for Hydraulic Filling Efficiency Improvements (수압식 충전의 효율 향상을 위한 선단장치 개발에 관한 연구)

  • Yu, Sung-Kon;Kim, Tae-Heok;Shin, Dong-Chun
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.403-411
    • /
    • 2012
  • In recent, the using of the hydraulic filling method has increased on the underground reinforcement of the abandoned mine in Korea, however it is the lack of research on the efficient filling method. In this study, tank model tests and field tests were conducted for development of tip device for filling efficiency improvements on the hydraulic filling method. In tank model experiments, the filling efficiency was evaluated according to the form and angle of the nozzle on tip device in the same condition. Then tip device model designed by tank model tests was applied to the field experiment. As a result, the amount of filling of nozzle $90^{\circ}$ tube is increased by approximately 18% compared to the common vertical injection pipe. The angle of repose was $30.82^{\circ}$. Filling hole spacing in the field is usually designed from 5m up to 10m assumed to be $40^{\circ}$ of the angle of repose. According to the results of this study, it is possible that the filling hole spacing expands at least 10m up to 15m applied to be $30^{\circ}{\sim}35^{\circ}$ of the angle of repose. Therefore, it is expected to be economical and efficient mine filling.

Evaluation of Groundwater Flow by Gravel-Filling and Temporary Drainage in Groundwater-saturated Limestone Mine Cavities (지하수 포화 석회석 채굴공동에서의 골재 충전 및 임시배수시 발생하는 지하수 유동 평가)

  • Choi, Woo-Seok;Kang, Byung-Chun;Kim, Eun-Sup;Shin, Dong-Choon
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.205-216
    • /
    • 2017
  • Fluctuations in groundwater level are the major cause of ground subsidence in the abandoned limestone mine. In this study, evaluation of groundwater flow under three different cases of natural condition, aggregate-filling, temporary drainage in groundwater-saturated limestone mine cavities was executed by 3-dimensional analysis. In the case of aggregate-filling, although the water level both in the upper ground of mine cavities and an agricultural watershed was elevated, it was lower than the water level fluctuation of an agricultural water use and rainfall and the flow rate was similar to the flow rate of natural condition. In the case of temporary drainage, as the water level in the upper ground of mine cavities and an agricultural watershed decrease rapidly and the flow rate has increased by 25times, so the risk of ground subsidence increased.

Some Problems on the Concept of Mineral Paragenesis and Macrostructures of Ore Veins, with special reference to those of Ore Veins at the Ohtani Mine, Kyoto Prefecture, Japan (광물공생(鑛物共生)의 개념(槪念)에 대(對)한 문제점(問題點)과 광맥광상(鑛脈鑛床)의 macrostructure -특(特)히 일본(日本) 대고광산(大谷鑛山)의 광맥광상(鑛脈鑛床)에 대(對)한 macrostructure-)

  • Kim, Moon Young;Nakamura, Takeshi
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.97-102
    • /
    • 1986
  • Concepts on mineral association, mineral paragenesis, and mineralization stage relating to macrostructures of vein filling in ore veins are briefly discussed. As an example of plutonic ore vein, macrostructures of vein filling of plutonic tungsten-tin-copper vein at the Ohtani mine, Kyoto Prefecture, Japan, one of representatives of plutonic tungsten-tin vein related genetically to acidic magmatism of late Cretaceous in the Inner zone of Southwest Japan, are examined. Based on macrostructures of vein filling, three major mineralization stages, are distinguished by major tectonic breaks. Sequence of mineralization, characteristic features of each mineralization stage, and variations of filling temperature and salinity ranges of fluid inclusions in minerals from stage I to stage III are summarized.

  • PDF

A Study on the Status and Major Achievements on Mine Subsidence Prevention Technology (광해방지 지반침하방지 기술개발 추진 현황 및 주요 성과)

  • Yang, In Jae;Lee, Seung Ah
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.357-365
    • /
    • 2017
  • The mine subsidence prevention technology has been promoted based on the field test for design, construction, automation measurement and monitoring optimized for investigation, design and mine-filling efficiency customized in Korean mining environment. Based on the R&D roadmap ('07~'16) of the 1st and 2nd stage, mine reclamation technology development has been focused on developing method of evaluating subsidence stability, development of filling material and optimum filling technology, and development of measuring instrument. In the future, in order to systematic management for the subsidence risk areas, we intend to enhance technological capabilities and strengthen the technological infrastructure for business promotion in parallel with the discovery and introduction of new technology to prevent subsidence in the 4th Industrial Revolution era.