• Title/Summary/Keyword: Mindlin theory

Search Result 141, Processing Time 0.022 seconds

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.

A new finite element formulation for vibration analysis of thick plates

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.324-345
    • /
    • 2015
  • A new procedure for determining properties of thick plate finite elements, based on the modified Mindlin theory for moderately thick plate, is presented. Bending deflection is used as a potential function for the definition of total (bending and shear) deflection and angles of cross-section rotations. As a result of the introduced interdependence among displacements, the shear locking problem, present and solved in known finite element formulations, is avoided. Natural vibration analysis of rectangular plate, utilizing the proposed four-node quadrilateral finite element, shows higher accuracy than the sophisticated finite elements incorporated in some commercial software. In addition, the relation between thick and thin finite element properties is established, and compared with those in relevant literature.

New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.485-502
    • /
    • 2009
  • A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.527-546
    • /
    • 2018
  • This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.

Strain gradient theory for vibration analysis of embedded CNT-reinforced micro Mindlin cylindrical shells considering agglomeration effects

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.551-565
    • /
    • 2017
  • Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the basis of Mindlin cylindrical shell theory, energy method and Hamilton's principal. Differential quadrature method (DQM) is proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the frequency of structure increases with enhancing the small scale parameter.

Isogeometric Collocation Method to solve the strong form equation of UI-RM Plate Theory

  • Katili, Irwan;Aristio, Ricky;Setyanto, Samuel Budhi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • This work presents the formulation of the isogeometric collocation method to solve the strong form equation of a unified and integrated approach of Reissner Mindlin plate theory (UI-RM). In this plate theory model, the total displacement is expressed in terms of bending and shear displacements. Rotations, curvatures, and shear strains are represented as the first, the second, and the third derivatives of the bending displacement, respectively. The proposed formulation is free from shear locking in the Kirchhoff limit and is equally applicable to thin and thick plates. The displacement field is approximated using the B-splines functions, and the strong form equation of the fourth-order is solved using the collocation approach. The convergence properties and accuracy are demonstrated with square plate problems of thin and thick plates with different boundary conditions. Two approaches are used for convergence tests, e.g., increasing the polynomial degree (NELT = 1×1 with p = 4, 5, 6, 7) and increasing the number of element (NELT = 1×1, 2×2, 3×3, 4×4 with p = 4) with the number of control variable (NCV) is used as a comparable equivalent variable. Compared with DKMQ element of a 64×64 mesh as the reference for all L/h, the problem analysis with isogeometric collocation on UI-RM plate theory exhibits satisfying results.

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation

  • Ozdemir, Y.I.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.213-222
    • /
    • 2018
  • The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

Nonlocal Mindlin plate theory with the application for vibration and bending analysis of nanoplates with the flexoelectricity effect

  • Pham Ba Khien;Du Dinh Nguyen;Abdelouahed Tounsi;Bui Van Tuyen
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • This work is the first of its kind to integrate Mindlin's theory with analytical methods in order to produce an exact solution to a specific vibration issue as well as a bending problem involving a nanoplate that is supported by a viscoelastic foundation. The plate is exposed to the simultaneous effects of a compressive load in the plate plane and a force operating perpendicular to the plane of the nanoplate. In addition, the flexoelecity effect is included into the plate. The strain gradient component is taken into consideration while calculating the plate equilibrium equation using the nonlocal theory and Hamilton's principle. The free vibration and static responses of the nanoplate seem to be both real and imaginary components because of the appearance of the viscoelastic drag coefficient of the viscoelastic foundation. This study also shows that when analyzing the mechanical response for nanostructure, taking into account the flexoelectricity effect and the influence of the nonlocal parameter, the results will be completely different from the case in which this parameter is ignored. This indicates that it is vital to take into consideration the effects of nonlocal parameters on the nanosheet structure while also taking into consideration the effect of flexoelectricity.

A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints

  • Abdalla, J.A.;Ibrahim, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.725-739
    • /
    • 2007
  • In recent years there are many plate bending elements that emerged for solving both thin and thick plates. The main features of these elements are that they are based on mix formulation interpolation with discrete collocation constraints. These elements passed the patch test for mix formulation and performed well for linear analysis of thin and thick plates. In this paper a member of this family of elements, namely, the Discrete Reissner-Mindlin (DRM) is further extended and developed to analyze both thin and thick plates with geometric nonlinearity. The Von K$\acute{a}$rm$\acute{a}$n's large displacement plate theory based on Lagrangian coordinate system is used. The Hu-Washizu variational principle is employed to formulate the stiffness matrix of the geometrically Nonlinear Discrete Reissner-Mindlin (NDRM). An iterative-incremental procedure is implemented to solve the nonlinear equations. The element is then tested for plates with simply supported and clamped edges under uniformly distributed transverse loads. The results obtained using the geometrically NDRM element is then compared with the results of available analytical solutions. It has been observed that the NDRM results agreed well with the analytical solutions results. Therefore, it is concluded that the NDRM element is both reliable and efficient in analyzing thin and thick plates with geometric non-linearity.

Free vibration analysis of moderately-thick and thick toroidal shells

  • Wang, X.H.;Redekop, D.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.449-463
    • /
    • 2011
  • A free vibration analysis is made of a moderately-thick toroidal shell based on a shear deformation (Timoshenko-Mindlin) shell theory. This work represents an extension of earlier work by the authors which was based on a thin (Kirchoff-Love) shell theory. The analysis uses a modal approach in the circumferential direction, and numerical results are found using the differential quadrature method (DQM). The analysis is first developed for a shell of revolution of arbitrary meridian, and then specialized to a complete circular toroidal shell. A second analysis, based on the three-dimensional theory of elasticity, is presented to cover thick shells. The shear deformation theory is validated by comparing calculated results with previously published results for fifteen cases, found using thin shell theory, moderately-thick shell theory, and the theory of elasticity. Consistent agreement is observed in the comparison of different results. New frequency results are then given for moderately-thick and thick toroidal shells, considered to be completely free. The results indicate the usefulness of the shear deformation theory in determining natural frequencies for toroidal shells.