• Title/Summary/Keyword: Milling energy

Search Result 507, Processing Time 0.024 seconds

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

Formation and Chemical Leaching of a Non-Equilibrium Al(Fe-Cu) Alloy Powder produced by Rod-Milling (Rod Milling에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 형성 및 Chemical Leaching)

  • 김현구;명화남
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • We report the structure, thermal and magnetic properties of a non-equilibrium $Al_{0.6}(Fe_{50}Cu_{50})_{0.4}$ alloy powder produced by rod milling and chemical leaching. An X-ray diffractometry(XRD), a transmission electron microscope(TEM), a differential scanning calorimeter(DSC), a vibrating sample magnetometer(VSM), and superconducting quantum interference device(SQUID) were utilized to characterize the as-milled and leaching specimens. The crystallite size reached a value of about 8.82 nm. In the DSC experiment, the peak temperatures and crystallization temperatures decreased with increasing milling time. The activation energy of crystallization is 200.5 kJ/mole for as-milled alloy powder. The intensities of the XRD peaks of as-milled powders associated with the bcc type $Al_{0.5}Fe_{0.5}$ structure formative at $350^{\circ}C$ sharply increase with increasing annealing temperature. Above $400^{\circ}C$, peaks alloted to $Al_{0.5}Fe_{0.5}$ and $Al_{5}Fe_{2}$ are observed. After annealing at $600^{\circ}C$ for 1h, the leached Ll specimen transformed into bcc $\alpha$-Fe and fcc Cu phases, accompanied by a change in the structural and magnetic properties. The saturation magnetization decreased with increasing milling time, and a value of about 8.42 emu/g was reached at 500 h of milling. The coercivity reached a maximum value of about 142.7 Oe after 500 h of milling. The magnetization of leached specimens as function of fields were higher at 5 K, and increased more sharply at 5 K than at 100 K.

Enhancement of the Critical Current Density of $MgB_2$ Prepared using Mechanically Milled and Glycerin Treated Boron Powder (기계적 밀링 및 글리세린 처리된 보론 분말을 사용하여 제조된 $MgB_2$의 임계전류밀도 향상)

  • Jun, Byung-Hyuk;Kim, Yi-Jeong;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • A combined process of a mechanical ball milling and liquid glycerin ($C_{3}H_{8}O_3$) treatment of boron (B) powder has been conducted to enhance the superconducting properties of $MgB_2$. The individual aims of the mechanical milling and the glycerin treatment were to reduce the grain size of the $MgB_2$ and to achieve homogeneous carbon (C) incorporation into the $MgB_2$, respectively. Four kinds of B powders of as-received, glycerin treated, 2 h milled, and 2 h milled + glycerin treated were prepared. $MgB_2$ bulks were fabricated by in situ process using the prepared B powders. The mechanical ball milling was effective for a grain refinement, and a lattice disorder was easily achieved by glycerin addition. It was found that the critical current density ($J_c$) values were enhanced in the samples with milled B or glycerin treated B only. In the $MgB_2$ bulk prepared with both milled and glycerin treated B, the $J_c$ was further increased due to a higher grain boundary density and a greater C substitution.

  • PDF

Electrochemical Properties of SnCo for Anode Material of Li Ion Batteries (리튬 이온 전지 음극 재료용 SnCo의 전기화학적 특성)

  • Kim, Ki-Tae;Kim, Yong-Mook;Lee, Yong-Ju;Lee, Ki-Young;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2002
  • SnCo alloy powder prepared by high energy ball milling is examined as an anode material for lithium-ion batteries. As the ball-milling time increased, the crystallinity of SnCo decreased. XRD and TEM SADP showed that nanocrystalline and amorphous phase coexisted after 16 h ball-milling. As the crystallinity decreased, the cycleability increased. At first cycle, there are 4 plateau potentials. The observation of voltage plateau at about 0.68 V confirms the formation of Sn-Li alloy and Co metal. It is considered that The plateau potentials below 0.68 V were reaction between Li and Sn. The change of chemical diffusion coefficient showed that the structure of SnCo alloy abruptly changed at first cycle, and maintained after 2nd cycle.

A Study on Mechano-chemical Ball Milling Process for Fabricating Tungsten Disulfide Nanosheets (이황화텅스텐 나노시트 제조를 위한 기계화학적 볼밀링 공정 연구)

  • Kim, Seulgi;Ahn, Yunhee;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.376-381
    • /
    • 2022
  • Tungsten disulfide (WS2) nanosheets have attracted considerable attention because of their unique optical and electrical properties. Several methods for fabrication of WS2 nanosheets have been developed. However, methods for mass production of high-quality WS2 nanosheets remain challenging. In this study, WS2 nanosheets were fabricated using mechano-chemical ball milling based on the synergetic effects of chemical intercalation and mechanical exfoliation. The ball-milling time was set as a variable for the optimized fabricating process of WS2 nanosheets. Under the optimized conditions, the WS2 nanosheets had lateral sizes of 500-600 nm with either a monolayer or bilayer. They also exhibited high crystallinity in the 2H semiconducting phase. Thus, the proposed method can be applied to the exfoliation of other transition metal dichalcogenides using suitable chemical intercalants. It can also be used with high-performance WS2-based photodiodes and transistors used in practical semiconductor applications.

Effects of High Energy Ball Milling on the Piezoelectric Properties of Lead-free (K0.44Na0.52)(Nb0.86Ta0.10)-0.04LiSbO3 Ceramics (고에너지 볼 밀링을 이용한 (K0.44Na0.52)(Nb0.86Ta0.10)-0.04LiSbO3 무연 압전 세라믹스의 특성)

  • Kim, Young-Hyeok;Heo, Dae-Young;Tai, Weon-Pil;Lee, Jae-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.363-367
    • /
    • 2008
  • Lead-free $(K_{0.44}Na_{0.52})(Nb_{0.86}Ta_{0.10})-0.04LiSbO_3$ piezoelectric ceramics have been synthesized by conventional sintering process and then investigated on the sintering and piezoelectric properties by high energy ball milling (HEBM) treatment. The powders milled for different time are characterized by XRD, FE-SEM. The powders are pressed into a pellet and sintered. It is found that the piezoelectric properties of sintered specimens are strongly dependent on the milling time. The piezoelectric properties are enhanced by high energy ball milling treatment. The planer electromechanical coupling factor ($k_p$) and piezoelectric constant ($d_{33}$) of a specimen sintered at $1050^{\circ}C$ are 0.44 and 267 pC/N, respectively.

Synthesis of Carbonyl Iron-reinforced Polystyrene by High Energy Ball Milling

  • Nguyen, Hong-Hai;Nguyen, Minh-Thuyet;Kim, Won Joo;Kim, Jin-Chun;Kim, Young-Soo;Kim, Young-Hyuk;Nazarenko, Olga B.
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.276-281
    • /
    • 2016
  • Carbonyl iron (CI) is successfully incorporated as an additive into a polystyrene (PS) matrix via a highenergy ball milling method, under an n-hexane medium with volume fractions between 1% and 5% for electromagnetic interference shielding applications by the combination of magnetic CI and an insulating PS matrix. The morphology and the dispersion of CI are investigated by field emission scanning electron microscopy, which indicates a uniform distribution of CI in the PS matrix after 2 h of milling. The thermal behavior results indicate no significant degradation of the PS when there is a slight increase in the onset temperature with the addition of CI powder, when compared to the as-received PS pellet. After milling, there are no interactions between the CI and the PS matrix, as confirmed by Fourier transformed infrared spectroscopy. In this study, the milled CI-PS powder is extruded to make filaments, and can have potential applications in the 3-D printing industry.

Effects of Abnormal Kernels in Brown Rice on Milling Characteristics (현미 비정상립이 도정특성에 미치는 영향)

  • Kim, Chang-Jin;Lee, Hyun-Jeong;Kim, Oui-Woung;Keum, Dong-Hyuk;Kim, Hoon
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.1-5
    • /
    • 2007
  • This study was conducted to find out effects of abnormal kernels of 0 to 30% in brown rice on quality characteristics during milling using friction type test mill. The average hardness values of abnormal and normal brown rice kernels were 6.52 kg$_f$, 8.48 kg$_f$, respectively. According to the increase of abnormal kernels in brown rice, grain temperature, required electrical energy, the broken kernels ratio, and the weight of solid matter on the surface of milled rice were increased due to crush of the abnormal kernels during milling, which proves that abnormal kernels in brown rice should be removed before milling to improve milling characteristics.

Fabrication of Silver Flake Powder by the Mechanical Milling Process (기계적 밀링공정에 의한 은 플레이크 분말 제조)

  • Jeong, Hae-Young;Lee, Gil-Geun
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision.

Cryogenic milling for the fabrication of high Jc MgB2 bulk superconductors

  • Kim, D.N.;Kang, M.O.;Jun, B.H.;Kim, C.J.;Park, H.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.19-24
    • /
    • 2017
  • Cryogenic milling which is a combined process of low-temperature treatment and mechanical milling was applied to fabricate high critical current density $(J_c)MgB_2$ bulk superconductors. Liquid nitrogen was used as a coolant, and no solvent or lubricant was used. Spherical Mg ($6-12{\mu}m$, 99.9 % purity) and plate-like B powder (${\sim}1{\mu}m$, 97 % purity) were milled simultaneously for various time periods (0, 2, 4, 6 h) at a rotating speed of 500 rpm using $ZrO_2$ balls. The (Mg+2B) powders milled were pressed into pellets and heat-treated at $700^{\circ}C$ for 1 h in flowing argon. The use of cryomilled powders as raw materials promoted the formation reaction of superconducting $MgB_2$, reduced the grain size of $MgB_2$, and suppressed the formation of impurity MgO. The superconducting critical temperature ($T_c$) of $MgB_2$ was not influenced as the milling time (t) increased up to 6 h. Meanwhile, the critical current density ($J_c$) of $MgB_2$ increased significantly when t increased to 4 h. When t increased further to 6 h, however, $J_c$ decreased. The $J_c$ enhancement of $MgB_2$ by cryogenic milling is attributed to the formation of the fine grain $MgB_2$ and a suppression of the MgO formation.