• 제목/요약/키워드: Milling cutter

검색결과 165건 처리시간 0.025초

볼엔드밀을 이용한 고속가공에서 가공경로와 가공환경에 따른 가공성 평가 (Evaluation of Machinability by various cutting conditions in high machining using ball nose-end mills -Effects of cutting orientation and cutting environments-)

  • 이채문;김석원;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.297-301
    • /
    • 2002
  • High-speed machining generates concenter thermal/frictional damage at the cutting ed rapidly decreases the tool life. This paper I at determining the effect of cutter orienter the cutting environment on tool life, tool mechanism when down milling. In this paper, experiments were carried out in various tool and cutting environments, such as dry, wet compressed chilled air, tool life were measu evaluate machinability in high-speed milli difficult-to-cut material and die steel, Tool measured in horizontal upwards, horiz downwards, vertical upwards and vert downwards. In addition, tool life was measur dry, wet and compressed chilled air. For this a compressed chi1led-air system was manufact The results show that a horizontal cutter ori provided a longer tool life than a vertical orientation. With respect to the cutting envi compressed chilled air increased tool life. H the wet condition decreased tool life due thermal shock caused by excessive cooling high-speed mill ins and the compressed chilled had little effect.

  • PDF

권선각 변화에 따른 철도차량 스크류압축기용 로터의 커터설계 (Cutter Design of Rotors in Screw Compressor for Railway Vehicle)

  • 김연수;박성혁;최부희;최상훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.485-491
    • /
    • 2001
  • This paper describes the development of simulation program which is able to design cutter profiles and 3-dimensional geometry for rotors in screw compressor. Based on the symmetric rotor profiles developed previously, cutters are designed and 3-dimensional geometries of rotors are generated used by simulation program. Symmetric rotors are manufactured by a universal milling machine, and surface geometries of them are measured by a 3-dimension scanner. It is shown that simulation program developed is useful to design cutter for rotor manufacturing and to generate the 3-dimensional helicoid geometry of rotor in screw compressor.

  • PDF

자유곡면의 정밀가공을 위한 표면거칠기의 정량적 해석에 관한 연구 (A Study Quantitative Analysis of Surface Roughness for Precision Machining of Sculptured Surface)

  • 김병희;주종남
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1483-1495
    • /
    • 1994
  • A quantitative analysis of a surface roughness for a precision machining of a sculptured surface in milling process is treated under superposition theory in this paper. The geometrical surface rouhgness is calculated as a function of feed per tooth, path interval, radii of tool and cutting edge, and radii of curvatures of workiece. Through machining experiments in a 3-axis machining center, we confirmed the adequacy of the adequacy of the analysis. While cutter mark is neglegible in ball endmilling, it is significant in flat endmilling. When feed per tooth is very small, flat endmilling gives superior finish to ball endmilling. In flat endmilling, cutting condition and cutter path should be strategically chosen to balance the cutter mark height and cusp height.

반복학습제어를 이용한 커터 런아웃 보상에 관한 연구 (A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control)

  • 황준;정의식;황덕철
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

3축 밀링 가공의 공구 충돌 검증 (Verification of Tool Collision for 3-Axis Milling)

  • 정연찬;박정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.116-121
    • /
    • 2001
  • Verification of tool collision is an important issue in die and mold machining. In this paper three functions of verification are schematically explained based on Z-Map model. The first function is getting a collision-free region when a tool assembly and a part surface model are given. The second function estimates the shortest length of cutter shank with that the tool cuts all of a region without collision. The last one is cutting simulation considering all parts of tool assembly as well as cutter blade. Those functions can be easily implemented by using several basic operators of Z-Map model which are explained also. Proposed approaches have enough accuracy to verify collision in reasonable computing time.

  • PDF

정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링 (A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling)

  • 권원태;김기대
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

주축 런아웃이 절삭흔과 표면거칠기에 미치는 영향에 관한 연구 (A Study on the Spindle Run-out Effects on Cutter Mark and Surface Roughness)

  • 황영국;이춘만
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.84-91
    • /
    • 2007
  • The radial error motion of a machine tool cutter/spindle system is critical to the dimensional accuracy of the parts to be machined. This paper presents an investigation into spindle run-out effects on cutting mark and surface roughness. We experimented the effects of spindle run-out on surface roughness in flat-end milling by cutting AL 7075 workpiece in various cutting conditions. In order to analyze the effects of run-out on the surface roughness, the spindle's radial error motions was measured by mounting a sphere target onto the spindle as a reference. From the experimental results, it was found that spindle un-out makes a directive effects on surface roughness in flat-end milling.

볼엔드 밀링에서의 일정 절삭력을 위한 NURBS 곡면 인터폴레이터 (NURBS Surface Interpolator for Constant Cutting Forces in Ball-End Milling)

  • 지성철;구태훈
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1888-1896
    • /
    • 2002
  • This study presents a new type of CNC interpolator that is capable of generating cutter paths for ball-end milling of NURBS surfaces. The proposed surface interpolator comprises real-time algorithms for cutter contact (CC) path scheduling and CC path interpolator. Especially in this study, a new interpolator module to regulate cutting forces is developed. This propose algorithm utilizes variable-feedrate commands along the CC path according to the curvature of machined surfaces during the interpolation process. Additionally, it proposes an OpenGL graphic library for computer graphics and animation of interpolated tool-position display. The proposed interpolator is evaluated and compared with the existing method based on constant feedrates through computer simulations.

엔드밀 가공에서의 절삭력 모델링에 관한 연구 (A Study on the Modeling for Cutting Force)

  • 김성청
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.58-65
    • /
    • 2000
  • This study is concerned about the verification and the implementation of a mechanical model for the force system in end milling. The model is based on the relationship between the cutting forces and the chip thickness. The components of the model are based on the average cutting forces which are experimentally obtained. And, both instantaneous and average force system characteristics are described as a function of cut geometry and a feed rate. This model employed two specific cutting forces, instantaneous and average specific cutting force, and the models which obtained using two cutting forces were compared and analyzed. In this study, cutter deflection with respect to the center of rotation is considered, which is a major part of the tool run-outs. The effect of run-out on the cutting forces is also discussed. The relationships among the run-out parameters, cutting parameters and the resulting force system characteristics are presented. In all cases, for the down milling with a right hand helix cutter is considered.

  • PDF

볼엔드밀 가공에서 공구 런아웃 매개변수 검출 (Cutter Runout Parameter Estimation in Ball-End Milling)

  • 김창주;김성윤;주종남
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.171-178
    • /
    • 2000
  • In this study, an indirect method to estimate the setup runout of a ball-end mill from cutting force signal is proposed. This runout makes cutting forces of each tooth of the milling cutter unequal. By transforming the cutting force model from time domain to frequency domain through time-convolution theorem, the magnitude and phase angle of runout can be explicitly expressed with material constants, cutting conditions, and force signal. The static setup runout can be obtained by extrapolating estimated effective runout, which is independent of feedrate but decreases linearly with increase in axial depth of cut. The setup runout estimated by slot cutting experiments, shows good agreement with the measured one.

  • PDF