• 제목/요약/키워드: Milling Cutter

검색결과 165건 처리시간 0.026초

5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (II) 커섭 높이 예측과 공구경로 결정 (A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (ll) The Prediction of Cusp Heights and Determination of Tool Path interval)

  • 조현덕;전용태;양민양
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2012-2022
    • /
    • 1993
  • For the machining of the sculptured surfaces on 5-axis CNC milling machine, the milling cutter direction vector was determined in the study (I) with 5-axis post-processing. Thus, it was possible to cut the sculptured surfaces on five-axis CNC milling machine with the end mill cutter. Then, for smooth machined surfaces in five-axis machining of free-from surfaces, this study develops an algorithm for prediction of cusp heights. Also, it generates tool path such that the cusp heights are constrained to a constant value or under a certain value. For prediction of the cusp height between two basis points, a common plane, containing the line crossing two basis points and the summation vector of two normal vectors at two basis points, is defined. The cusp height is the maximum value of scallops on the common plane after end mill cutter passes through the common plane. Sculptured surfaces were machined with CINCINNATI MILACRON 5-axis machining center, model 20V-80, using end mill cutter. Cusp heights were verified by 3-dimensional measuring machine with laser scanner, WEGU Messtechnik GmbH.

엔드밀가공에서 커터회전방향에 따른 절삭력의 최적화 (Optimization of Cutting Force for End Milling with the Direction of Cutter Rotation)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.79-84
    • /
    • 2017
  • This paper outlines the Taguchi optimization methodology, which is applied to optimize cutting parameters in end milling when machining STS304 with TiAlN coated SKH59 tool under up and down end milling conditions. The end milling parameters evaluated are depth of cut, spindle speed and feed rate. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these end milling parameters. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. An orthogonal array of $L_9(33)$ was used. The most important input parameter for cutting force, however, is the feed rate, and depending on the cutter rotation direction. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

  • PDF

Worm 절삭 가공 시 Side Milling Cutter 와 Whirling Tool 의 절삭력에 관한 연구 (A Study on the Cutting Force of Side Milling Cutter and Whirling Tool in Worm Screw Machining)

  • 권태웅;김창현;강동배;이민환;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1879-1882
    • /
    • 2005
  • Due to increase of demands on safety and convenience for automotive vehicle, the use of DC motor, such as power window, seat adjusting, pedal adjusting, sunroof, electric shift motor and so on, is increasing rapidly in the whole world. Worm gear is an important part to transmit torque to another gear in gear mechanism of automotive DC motor. But with current forming process, it has some problems in manufacturing and the quality. Also, the characteristics of automotive parts such as price and mass-production limit the quality improvement. Recently several methods are used in order to reduce a worm screw machining time and to maintain precision. In this paper, we introduce whirling tool machining and side milling cutter machining as effective manufacturing method of worm screw and study on the cutting force of side milling cutter and whirling tool in worm screw machining.

  • PDF

구성인선을 고려한 소형 박판 밀링공구의 설계 (Design of A Small Thin Milling Cutter Considering Built-up Edge)

  • 정경득;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.130-136
    • /
    • 2001
  • Generally, a metal slitting saw is plain milling cutter with thickness less than 3/16 inch. This is used for cutting a workpiece that high dimensional accuracy and surface finish is necessary. A small thin milling cutter like a metal slitting saw is useful for machining a narrow groove. In this case, built up edge(BUE) is severe at each tooth and affects the surface integrity of the machined surface and tool wear. It is well known that tool geometry and cutting conditions are decisive factors to remove BUE. In this paper, we optimized the geometry of the milling cutter and selected cutting conditions to remove BUE by the experimental investigation. The experiment was planned with Taguchi method based on the orthogonal array of design factors such as coating, rake angle, number of tooth, cutting speed, feed rate. Response table was obtained from the number of built-up edge generated at tooth. The optimized tool geometry and cutting conditions could be determined through response table. In addition, the relative effect of factors was identified bh the analysis of variance (ANOVA). Finally, coating and cutting speed turned out important factors for BUE.

  • PDF

Cutting simulation을 이용한 End-milling cutter의 모델링 및 제작에 관한 연구 (End-mill Modeling and Manufacturing Methodology via Cutting simulation)

  • 김재현;박수정;김종한;박정환;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.456-463
    • /
    • 2005
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data fur fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data fer machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used fur virtual cutting test and analysis as well.

  • PDF

인서트형 밀링커터의 복합5축가공 기술개발에 관한 연구 (Study on the development of multi-tasking 5-axis machining for insert type milling cutter)

  • 황종대;정윤교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.21-26
    • /
    • 2004
  • This research presents a modeling and a manufacturing method of insert type milling cutters such as face cutter, flat endmill and ball endmill. The methods introduced in this paper adopts the multi-tasking 5-axis machining that is increasing machining accuracy of holder and position accuracy of bolting points. So this can be used in the basic document of the total package program that involves modeling and manufacturing module in various insert cutters.

  • PDF

Side Milling Cutter 를 이용한 Worm Screw 가공시 절삭 모델링을 통한 Cusp 예측 (A study on the forecast of Cusp by Cutting Modeling in Worm Screw Process by Side Milling Cutter)

  • 김창현;권태웅;강동배;이민환;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1893-1896
    • /
    • 2005
  • Cutting force and face roughness have the largest influence on precision of a structure or processing efficiency in cutting processing. Thus cutting force model and face roughness model are necessary for this interpretation. In this paper, tool path model and face roughness model which consider the blade number of a tool and a revolution speed of tool and workpiece in the worm processing using side milling cutter are presented. This model was used to forcast the cusp. Experimental results show that the predicted cusp coincides with experimental one.

  • PDF

엔드밀링 절삭력에 미치는 공구형상오차 I -상향 엔드밀링- (Effects of cutter runout on end milling forces I -Up and milling-)

  • 이영문;최원식;송태성;권오진;백승기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.985-988
    • /
    • 1997
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study ,a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented in up end milling process using measured cutting forces. Size effect was identified from the analysis of specific cutting resistance obtained by using the modified undeformed chip section area.

  • PDF

Plunge Milling Force Model using Instantaneous Cutting Force Coefficients

  • Ko Jeong-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.8-13
    • /
    • 2006
  • Plunge milling process is used for machining hole and is widely used in aerospace, automobile, and die/mold industries. The cutter is fed in the direction of spindle axis which has the highest structural rigidity. The kinematics of plunge milling differs from the traditional turning and milling in aspect of tool engagement and chip generation. This paper proposes the mechanistic cutting force model for plunge milling. Uncut chip thickness is calculated using the present cutter edge position and the previous cutter edge position. Instantaneous cutting force coefficients, which depend only on instantaneous uncut chip thickness, are derived based on the mechanistic approach. The developed cutting force model is verified through comparison of the predicted and the measured cutting forces.

수치해석법에 의한 면삭밀링 작업에서의 절삭력과 표면조도에 관한 연구 (A Numerical Simulation Model for the Face Milling Operation)

  • 홍민성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.68-75
    • /
    • 1995
  • The milling process is one of the most important metal removal processes in industry. Due to the complexities inherent to the cutter insert geometry and the milling cutter kinematics, these processes leave an analytically difficult to predict texture on the machined surface's hills and valleys. The instantaneous uncut chip cross sectional area may be estimated by the relative position between the workpiece and the cutter inserts. furthermore, since the cutting forces are proportional to the instantaneous uncut chip cross sectional area, the cutting forces in face milling operations can not be estimated easily. A new simulation program which is based upon the numerical method has been proposed to estimate the cutting force components, with the ability to predict the machined surface texture left by the face milling operation.

  • PDF