• 제목/요약/키워드: Milling

검색결과 2,990건 처리시간 0.025초

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

AUC 공정으로 변환된 $UO_2$ 분말의 소결성에 미치는 Ball-milling효과 (Ball-milling Effect on the Sinterability of the $UO_2$ ex-AUC Powder)

  • 김형수;박춘호;박철주;최창범;정성훈;석호천
    • Nuclear Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.190-196
    • /
    • 1994
  • AUC 공정으로 변환된 $UO_2$ 분말의 ball-milling 효과를 관찰하기 위하여 ball-milling 시간에 따른 소결성을 연구하였다. Ball-milling된 분말은 구형화 형태를 보이며, 그의 입자 크기 분포는 bimodal 양상을 나타냈다. 분말크기 분포가 bimodal인 경우, 그의 packing ratio가 monomodal gaussian 분포에 비해 높다. Ball-milling된 분말의 소결밀도 증가는 packing ratio에 의한 영향이 컸으며, ball-milling 시간이 길어질수록 packing ratio는 증가 하였다. AUC 공정으로 변환된 $UO_2$ 분말은 ball-milling을 함으로써, 그의 소결성이 향상됨을 확인하였다.

  • PDF

HIGH-SPEED MILLING FOR DIE AND MOLD MAKING

  • Na, T.kagawa
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.51-60
    • /
    • 2000
  • High-speed milling machine is being sold mainly in the market of die and mold industries, because it reduces machining time greatly as proportion to the spindle speed of machine tool. From the experimental milling tests, it has been cleared that the ball end mill is quite suitable for high speed milling and also tool wear reduces in higher speed milling condition. And a new milling concept with ultra high speed over 100, 000 rpm is proposed for solving the various problems such as NC cutter path generation and NC feed conformity etc.

  • PDF

집속 이온빔 가공변수에 따른 Au 에칭 특성 연구 (The ocused Ion Beam Etching Characteristic of Au)

  • 박진주;김성동
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.129-133
    • /
    • 2007
  • Focused Ion Beam(FIB) systems is a useful tool for the fabrication of micro-nano scale structures. In this study, the effects of FIB etching on the Au microstructure are systematically investigated. As the fabrication parameters, ion dose, dwell time and beam overlap ratio are studied. First, the increases of Ga ion dose makes the milling yield higher and the sidewall of milling profile steeper. Dwell time is found to have little effects on the milling profile due to the relatively large milling area of $1\times1{\mu}m^2$ used in this study. However, beam overlap significantly affects not only milling rate but also milling profile. As the beam overlap ratio changes from positive to negative, the development of regular cross-stripe patterns at the bottom with low milling rate is observed.

런아웃을 고려한 측면 엔드밀 가공의 절삭력 분석 (An Analysis of the Cutting Force for Peripheral End-milling Considering Run-out)

  • 김종도;윤문철;김병탁
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.7-12
    • /
    • 2012
  • The cutting force for peripheral end-milling considering run-out property was estimated and its result was compared with that of measured one. An experimental coefficient modelling was used for the formulation of theoretical end-milling force by considering the specific cutting force coefficient. Also, the specific cutting force, that is the multiplication of specific cutting force coefficient and uncut chip thickness, was used for the prediction of end-milling force. The end-milling force mechanics with run-out was presented for the estimation of theoretical force in peripheral end-milling by considering the geometric shape of the workpiece part. As a result, the estimated end-milling force shows a good consistency with the measured one. And it can be used for the prediction of force history in end-milling with run-out which incurs different start and exit immersion angle in entering and exiting condition.

산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동 (Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics)

  • 황규홍;박정환;윤태경
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

볼밀링에 의한 알루미늄 프레이크 분말 제조 (Fabrication of Aluminium Flake Powder by Ball Milling Process)

  • 이동원
    • 한국분말재료학회지
    • /
    • 제3권3호
    • /
    • pp.159-166
    • /
    • 1996
  • A series of test were undertaken in order to estabilish the effect of different milling variables on dimension and quality of aluminium flake powder. Milling conditions such as initial powder size, milling container rotation speed, milling time, and ball size were varied to produce aluminium flake powder. Flake powder could then be obtained with size range from 15 $\mu$m to 40 $\mu$m with a maximum specific surface area of 5 $m^{2}$/g by controlling milling conditions. Diameter of milled powders with different milling container rotation speed and ball size were compared with that obtained from theoretical model. The best flake powder was obtained in milling condition of initial powder with average size of 19 $\mu$m, mill container rotation speed of 80 rpm, balls of 9.5 mm diameter, and milling time of 40 hours.

  • PDF

구리 관(管)의 절단(切斷) 공정(工程)중 발생한 구리칩 스크랩의 볼밀링에 의한 구리 분말(粉末) 제조(製造) 가능성(可能性) (Feasibility of Copper Powder Fabrication by Ball Milling of Copper Chip Scrap Occurred During Cutting Process of Copper Pipe)

  • 홍성현
    • 자원리싸이클링
    • /
    • 제20권6호
    • /
    • pp.37-42
    • /
    • 2011
  • 구리관의 절단 공정에서 구리 칩 스크랩이 발생해왔다. 분쇄에 의하여 구리칩 스크랩을 분말화하는 가능성이 연구되었다. 본 연구에서는 로드 밀링, 수평식 볼밀링과 같은 두 가지 타입의 분쇄 방식이 적용되었다. 구리 칩은 로드 밀링에 의하여 분말 형태로 분쇄될 수 없었다. 반면에 36시간 이상 수평식 볼밀링에 의하여 구리칩은 분말로 변화하였다. 수평식 볼밀링에 의한 구리 칩의 분말로 재활용이 가능하였고 48시간 동안 밀링된 원료중 $75{\sim}150{\mu}m$ 범위의 분말은 25.3%이였다.

진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구 (Machining of Repetitive Micro Patterns using Oscillation Micro Milling)

  • 노승국;김경호;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

X-ray diffraction analysis of the effect of ball milling time on crystallinity of milled polyacrylonitrile-based carbon fiber

  • Lee, Sang-Hye;Kang, Dong-Su;Lee, Sang-Min;Roh, Jae-Seung
    • Carbon letters
    • /
    • 제26권
    • /
    • pp.11-17
    • /
    • 2018
  • Milled carbon fiber (mCF) was prepared by a ball milling process, and X-ray diffraction (XRD) diffractograms were obtained by a $2{\theta}$ continuous scanning analysis to study mCF crystallinity as a function of milling time. The raw material for the mCF was polyacrylonitrile-based carbon fiber (T700). As the milling time increased, the mean particle size of the mCF consistently decreased, reaching $1.826{\mu}m$ at a milling time of 18 h. The XRD analysis showed that, as the milling time increased, the fraction of the crystalline carbon decreased, while the fraction of the amorphous carbon increased. The (002) peak became asymmetric before and after milling as the left side of the peak showed an increasingly gentle slope. For analysis, the asymmetric (002) peak was deconvoluted into two peaks, less-developed crystalline carbon (LDCC) and more-developed crystalline carbon. In both peaks, Lc decreased and $d_{002}$ increased, but no significant change was observed after 6 h of milling time. In addition, the fraction of LDCC increased. As the milling continued, the mCF became more amorphous, possibly due to damage to the crystal lattices by the milling.