• Title/Summary/Keyword: Millimeter-wave

Search Result 627, Processing Time 0.031 seconds

Forward-Looking GMTI and Estimation of Position and Velocity Based on Millimeter-Wave(W-Band) FMCW SAR (밀리미터파(W 밴드) FMCW SAR 기반 전방의 이동지상표적 탐지 및 위치와 속도 추정)

  • Lee, Hyukjung;Chun, Joohwan;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.459-469
    • /
    • 2017
  • An air-to-ground guidance missile aimed to hit a main battle tank(MBT) should detect a ground moving target and estimate the target position to guide. In this paper, we detect a front ground moving target by using FMCW(Frequency Modulated Continuous Wave) and estimate the position by forward-looking SAR(Synthetic Aperture Radar) via scanning certain front ground section by steering a beam with narrow beamwidth left to right mechanically. Also, by MLE(Maximum Likelihood Estimation), degree of how fast the target approach or recede from the radar can be figured out from the estimated radial velocity of the moving target. Subsequently, we generate a radar image via corrected matched filter from phase history including the radial velocity.

Radio Path Loss and Angle of Arrival Measurements to the Radio Environments at 60GHz (60GHz 대역에서의 전파 환경별 경로손실 및 도래각 측정)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2233-2240
    • /
    • 2007
  • This paper presents the measured path loss exponents and standard deviations using measured data at 60GHz to analyze the propagation characteristics of millimeter wave bands having great demand for picocellular communications. In addition the angle of arrival(AOA) were measured to analyze the arrival direction of muitipath waves affecting the received signal strength. As results of analysis, the pathloss exponents in each environment are found to be lower than 2 for free space pathloss exponent. They were determined with the qualities of bottom materials affecting signal strength. The angles of arrival by multipath waves were different with the circumference structures between transmitter and receiver. That is, the multipath waves excluding direct and ground reflected wave were difficult to find in wide space such a gymnasium and playground, however the wall multipath waves were found to arrive at receiver in the corridor. The multipath waves at 60GHz can be known to hardly affect to the received signal strength because of weak signals compared with direct wave.

DPLL System Development using 100GHz Band Gunn VCO (100GHz 대역 Gunn VCO를 이용한 DPLL 시스템 개발연구)

  • Lee, Chang-Hoon;Kim, K.D.;Chung, M.H.;Kim, H.R.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.210-215
    • /
    • 2006
  • In this paper, we develop the PLL system of the local oscillator system using Gunn oscillator VCO for millimeter wave band receiving system. The local oscillator system consists of the $86{\sim}115GHz$ Gunn. diode oscillator part, the RF processing part including the diplexer and the harmonic mixer, and the DPLL system including Gunn modulator and controller. Based on this configuration, we verify the frequency and power stability of the developed local oscillator system. We developed system which applied to DPLL technique instead of the existing analog PLL method to accomplish this purpose. The developed system for this purpose is tested the frequency and power stability for a long time to confirm performance. Since we confirmed this system that had frequency characteristic of within ${\pm}10Hz$, very fine output drift power characteristic of $0.2{\sim}0.3dBm$ and about 200MHz locking range, it verified suitable for cosmic radio receiving system through the test result.

Computationally Efficient ion-Splitting Method for Monte Carlo ion Implantation Simulation for the Analysis of ULSI CMOS Characteristics (ULSI급 CMOS 소자 특성 분석을 위한 몬테 카를로 이온 주입 공정 시뮬레이션시의 효율적인 가상 이온 발생법)

  • Son, Myeong-Sik;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.771-780
    • /
    • 2001
  • It is indispensable to use the process and device simulation tool in order to analyze accurately the electrical characteristics of ULSI CMOS devices, in addition to developing and manufacturing those devices. The 3D Monte Carlo (MC) simulation result is not efficient for large-area application because of the lack of simulation particles. In this paper is reported a new efficient simulation strategy for 3D MC ion implantation into large-area application using the 3D MC code of TRICSI(TRansport Ions into Crystal Silicon). The strategy is related to our newly proposed split-trajectory method and ion-splitting method(ion-shadowing approach) for 3D large-area application in order to increase the simulation ions, not to sacrifice the simulation accuracy for defects and implanted ions. In addition to our proposed methods, we have developed the cell based 3D interpolation algorithm to feed the 3D MC simulation result into the device simulator and not to diverge the solution of continuous diffusion equations for diffusion and RTA(rapid thermal annealing) after ion implantation. We found that our proposed simulation strategy is very computationally efficient. The increased number of simulation ions is about more than 10 times and the increase of simulation time is not twice compared to the split-trajectory method only.

  • PDF

Millimeter-wave LTCC Front-end Module for Highly Integrated Transceiver (고집적 송수신기를 위한 밀리미터파 LTCC Front-end 모듈)

  • Kim, Bong-Su;Byun, Woo-Jin;Kim, Kwang-Seon;Eun, Ki-Chan;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.967-975
    • /
    • 2006
  • In this paper, design and implementation of a very compact and cost effective front-end module are presented for IEEE 802.16 FWA(fixed Wireless Access) in the 40 GHz band. A multi-layer LTCC(Low Temperature Co-fred Ceramic) technology with cavity process to achieve excellent electrical performances is used to fabricate the front-end module. The wirebond matching circuit design of switch input/output port and waveguide transition to connect antenna are optimally designed to keep transmission loss low. To reduce the size of the front-end module, the dielectric waveguide filter is developed instead of the metal waveguide filter. The LTCC is composed of 6 layers(with the thickness of a layer of 100 um) having a relative dielectric constant of 7.1. The front-end module is implemented in a volume of $30{\times}7{\times}0.8mm^3$ and shows an overall insertion loss < 5.3 dB, and image rejection value > 49 dB.

High Conversion Gain and Isolation Characteristic V-band Quadruple Sub-harmonic Mixer (고 변환이득 및 격리 특성의 V-band용 4체배 Sub-harmonic Mixer)

  • Uhm, Won-Young;Sul, Woo-Suk;Han, Hyo-Jong;Kim, Sung-Chan;Lee, Han-Shin;An, Dan;Kim, Sam-Dong;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.293-299
    • /
    • 2003
  • In this paper, we have proposed a high conversion and isolation characteristic V-band quadruple sub-harmonic mixer monolithic circuit which is designed and fabricated for the millimeter wave down converter applications. While most of the sub-harmonic mixers use a half of fundamental frequency, we adopt a quarter of the fundamental frequency. The proposed circuit is based on a sub-harmonic mixer with APDP(anti-parallel diode pair) and the 0.1 ${\mu}{\textrm}{m}$ PHEMT's (pseudomorphic high electron mobility transistors). Lumped elements at IF port provide better selectivity of IF frequency and increase isolation. Maximum conversion gain of 0.8 ㏈ at a LO frequency of 14.5㎓ and at a RF frequency of 60.4 ㎓ is measured. Both LO-to-RF and LO-to-IF isolations are higher than 50 ㏈. The conversion gain and isolation characteristic are the best performances among the reported quadruple sub-harmonic mixer operating in the V-band millimeter wave frequency thus far.

Design and Fabrication of Ka-Band NRD Guide Filter with Newly Designed Inductive Post Structure (새로운 유도성 포스트 구조를 갖는 Ka-Band NRD 가이드 필터의 설계 및 제작)

  • 김영수;류원렬;유영근;최재하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • In this paper, Ka-Band NRD guide band pass filter with newly designed inductive post structure is proposed and analyzed with its test results. Generally, millimeter-wave filters are very sensitive in their physical dimensions, hence, it is requires extreme precisions of several micron so as to get the designed performance. In case of common NRD Guide filter with air gap coupled structure, it is fabricated with dielectric blocks coupled via air gap. In these structures, however, it was not easy to fabricate and to process of each NRD guide dielectric resonator blocks using PTFE, so it was almost impossible to assemble with several microns in precision. In this our research, however, each dielectric resonators are coupled with a pair of inductive metal post, so all resonators are located in a single NRD Guide. The dielectric parts between two pairs of posts are operated as resonators of each stage, and the positions of the post decide the couplings between resonators. The structure we suggested is suitable fur mass production, because it is very simple and easy to process. As a result of measurements, designed NRD guide inductive post filter has a superior performance. The center frequency is 39.475 GHz with 350 MHz bandwidth, insertion loss is less than 1.8 dB, and the return loss is below than -18 dB.

Position Control of Micro Particles in a Fluid Flow Using Ultrasonic Standing Wave (정재초음파를 이용한 유동중 미세 입자 위치 제어)

  • Cho, Seung-Hyun;Seo, Dae-Cheol;Ahn, Bong-Young;Kim, Ki-Bok;Kim, Yong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • Using ultrasonic standing waves, micro particles submerged or flowing in fluid can be manipulated. Due to acoustic radiation force of ultrasound, particles are forced to move to pressure nodal or antinodal lines. In this work, we propose a method to control the position of micro particle in a flow by adjusting the frequency of the standing wave. To this end, standing wave field generation system including a few millimeter thick micro channel was established using an immersible ultrasonic transducer. The present generation system works valid in a frequency range between 2.0 MHz and 2.5 MHz. We observed the SiC particles in water moved to pressure nodal lines by the standing wave. The effect of the channel thickness and operating frequency was also investigated. Interestingly, it was shown that the operating frequency have a close relation with the location of the pressure nodal line. Consequently, it fan be said that the position of particle movement rail be controlled by adjusting the ultrasound frequency. The maximum range of the controllable position was about 261 micrometers under the given condition. The resulted observations reveal the possibility of various applications of the ultrasonic standing wave to the manipulation of particles submerged in a fluid.

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF