• Title/Summary/Keyword: Millimeter wave radio

Search Result 95, Processing Time 0.021 seconds

A Study on FDTD Analysis and Fabrication of the Sheet-type Millimeter EM wave Absorber

  • Kim, Dae-Hun;Soo, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2010
  • In this paper, the EM wave absorber was developed for the 94-GHz detecting radar system. To analysis an EM wave absorber in millimeter wave band, we fabricated three absorber samples using carbon black and titanium dioxide and permalloy with chlorinated polyethylene. After measuring the complex relative permittivity, the absorption characteristics are simulated by 1D FDTD according to different thicknesses of less than 1.0 mm. Then, the EM wave absorber was fabricated based on the FDTD simulation. As a result, the measured results agreed well with the simulated ones, and the developed EM wave absorber with a thickness of 0.7 mm had the desired absorption characteristics of more than 14 dB in the frequency range of the 94-GHz band.

Study on Applicability of Radio over Fiber system for 5G New Radio Access Technology (5G New Radio Access Technology를 위한 Radio over Fiber 시스템의 수용가능성 연구)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.9
    • /
    • pp.849-854
    • /
    • 2016
  • 5G New Radio Access Technology(: RAT) is studied by many researchers because the current radio frequency is insufficient to accommodate the increased mobile communication data traffic. However, there are few researches to study on the issue whether the wired mobile network can accommodate the new RAT. Therefore, in the paper, the study on the issue whether the Radio over Fiber(: RoF) system can accommodate the new RATs such as millimeter wave communication, terahertz communication, and optical wireless communication. As a result of the study, only millimeter wave communication deserve to be considered in ten years and even RoF system may not support the increased bandwidth of the millimeter wave communication when beamforming is used.

A SIW Fed Antipodal Linear Tapered Slot Planar Multi-Beam Antenna for Millimeter-Wave Application

  • Zhang, Yingsong;Hong, Wei;Kuai, Zhenqi
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.175-178
    • /
    • 2010
  • In this paper, a millimeter-wave multi-beam antenna is studied by rotating the antipodal linear tapered slot antenna(ALTSA) with respect to a center is successfully designed. In order to lowering the SLL and enhancing the isolation between the ALTSA elements, a row of metallic via is inserted between the ALTSAs. A 9 beams antenna is designed and experimented at Ka band. The measured and simulated results agree well with each other. The antenna can provide horizontal wide angle coverage up to ${\pm}62^{\circ}$. The gain of each beam can achieve about 12.5 dB. The mutual coupling between ports is all below 20 dB.

A Study on the Convenient EMF Compliance Assessment for Base Station Installations at a Millimeter Wave Frequency

  • Lee, Young Seung;Lee, Haeng-Seon;Choi, Hyung-Do
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.242-247
    • /
    • 2018
  • This paper studies a convenient electromagnetic field (EMF) compliance assessment for base station installations at a millimeter wave (mmW) frequency. We utilize ray-tracing analysis as a numerical method for examining the wave propagation characteristic. Various installation cases are considered and the important parameters with a significant effect on the maximum power density levels are produced. We finally suggest the several scenarios for the convenient assessment of mmW base stations, which allow us to conduct cost effective computational tests compared with the current assessment procedure in the guideline.

Performance Analysis of DS-CDMA System in Millimeter-Wave Fading Channel (밀리미터파 페이딩 채널에서 DS-COMA시스템의 성능 분석)

  • Kang, Heau-Jo;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.544-550
    • /
    • 2009
  • In this paper, we proposed the radio wave propagation characteristics of the next-generation ultrafast wireless communication system in millimeter-wave fading channel. For considering doppler shift and Rayleigh fading simultaneously, the fading simulator of Jakes model implemented and analyzed the performance of the next-generation wireless communication system. In addition, the error rate characteristics of DS-CDMA system analyzed in the millimeter-wave fading channel and the system performance improved by coding technique and diversity technique.

  • PDF

Millimeter and Terahertz Wave Circuit and System Technologies and Trends for Future Mobile Communications (미래 이동통신을 위한 밀리미터파와 테라헤르츠파 대역 회로 및 시스템 기술 동향)

  • Jang, S.;Kong, S.;Lee, H.D.;Park, J.;Kim, K.S.;Lee, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • One of the most remarkable aspects of the recently completed 3GPP release-15 (5G new radio phase 1) is the fact that some millimeter-wave bands have been officially approved for 5G mobile communications. Because the demand for higher transmission capacity has only grown, other millimeter-wave or even higher-frequency terahertz-wave bands have attracted more attention over time. Based on this effort, this paper reviews and discusses the existing technologies and their trends in high-frequency circuits and systems at the millimeter and terahertz-wave bands, particularly for future mobile communications.

Experimental Analyses and Millimeter Wave Signal Generation Using Sideband Injection Locking Method (측파대 광 주입 락킹 기법을 이용한 밀리미터파 신호생성 및 실험적 분석)

  • Kim, Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2769-2774
    • /
    • 2010
  • In this paper, we have proposed sideband injection locking method, heterodyne technique, to generate millimeter-wave signal. Microwave signals in cellular broadband mobile communication networks and distributed networks can favorably be generated and distributed by optical techniques. In principle, these techniques have already been investigated for optical control of phase-array antennas, characterization of photo-detector and phase locking of millimeter-wave oscillators and now being applied to wireless communications. The generation and transmission of millimeter-wave radio signals by optical means is of interest for future pico-cell broadband mobile communication system, especially for systems operating at frequencies of tens of GHz applicable to LMDS. We experimented and analysed the generation of millimeter wave signal.

28 GHz Wireless Backhaul Transceiver Characterization and Radio Link Budget

  • Leinonen, Marko E.;Destino, Giuseppe;Kursu, Olli;Sonkki, Marko;Parssinen, Aarno
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.89-100
    • /
    • 2018
  • Millimeter wave communication is one of the main disruptive technologies in upcoming 5G mobile networks. One of the first candidate applications, which will be commercially ready by 2020, is wireless backhaul links or wireless last mile communication. This paper provides an analysis of this use-case from radio engineering and implementation perspectives. Furthermore, preliminary experimental results are shown for a proof-of-concept wireless backhaul solution developed within the EU-KR 5GCHAMPION project, which will be showcased during the 2018 Winter Olympic Games in Korea. In this paper, we verify system level calculations and a theoretical link budget analysis with conductive and radiated over-the-air measurements. The results indicate that the implemented radio solution is able to achieve the target key performance indicator, namely, a 2.5 Gbps data rate on average, over a range of up to 200 m.

Millimeter-wave signal Generation using Heterodyne Technique (헤테로다인 기법을 이용한 밀리미터파 신호 생성)

  • 김정태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1334-1340
    • /
    • 2003
  • In this paper, We have proposed an Heterodyne technique to generate millimeter-wave signal. Microwave signals in cellular broadband mobile communication networks and distributed networks can favorably be generated and distributed by optical techniques. In principle, these techniques have already been investigated for optical control of phase- array antennas, characterization of photo-detector and phase locking of millimeter-wave oscillators and now being applied to wireless communications. The generation and transmission of millimeter-wave radio signals by optical means is of interest for future pico-cell broadband mobile communication system, especially for systems operating at frequencies of 300Hz.