• Title/Summary/Keyword: Milk Traits

Search Result 160, Processing Time 0.026 seconds

Performance Evaluation of Jersey Cattle at Islamabad

  • Khan, R.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.695-698
    • /
    • 2002
  • Performance data (from 1985 to 2000) of Jersey cattle imported from USA and maintained at Islamabad, Pakistan were evaluated. The purpose of this study was to assess the genetic merit of Jersey breed under Pakistani environment for further propagation. Cows with at least two calvings were considered for this study; records on 50 daughter-dam pairs were available on production and reproduction performance traits for genetic evaluation. The average age at first calving in parents was $25.2{\pm}2.4$ m as compared to $23.9{\pm}6.6$ m in progeny. Calving interval in parents and progeny was $416{\pm}74$ and $446{\pm}105$ d; lactation length $301{\pm}51$ and $325{\pm}73$ d; lactation milk yield $2,908{\pm}669$ and $2,707{\pm}903$ lit respectively. All these differences were found to be statistically significant except lactation length. The correlations between age at first calving and total lactation milk was -0.25, between calving interval and total lactation milk yield was 0.14, and between lactation length and total lactation milk yield was 0.79. The $h^2$ of these traits were low indicating important role of environment in expressing the genetic potential of animals. The S.E of $h^2$ of all the traits was high due to large variation in data.

Association between SNPs within Prolactin Gene and Milk Performance Traits in Holstein Dairy Cattle

  • He, Feng;Sun, Dongxiao;Yu, Ying;Wang, Yachun;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1384-1389
    • /
    • 2006
  • Prolactin plays an important role in mammary gland development, milk section initiation and maintenance of lactation, so the bovine prolactin gene is considered as a potential quantitative trait locus affecting milk performance traits in dairy cattle. In this study, to determine the association between prolactin and milk performance traits, the genetic polymorphisms of a part of the prolactin gene were detected in a population of 649 cows of Chinese Holstein Dairy Cattle. Three SNPs in the promoter and one SNP in the intron1 of prolactin were identified, which was A/C (-767), G/T (-485), C/A (-247), and C/T (427), respectively. Statistical results indicated that one of SNP within promote, CHBP2, was significantly associated with milk yield (p<0.01), fat yield (p<0.05), protein yield (p<0.01), and protein percentage (p<0.05). The cows with genotype BB of CHBP2 had significantly higher milk yield (p<0.01), fat yield (p<0.05), and protein yield (p<0.01) than those of cows with genotype AA, while cows with genotype AA showed the highest protein percentage (p<0.05). In addition, based on the nine major haplotypes constructed from the four SNPs, the association analysis between diplotypes and milk performance trait was carried out. Results showed that the least square mean for fat yield of diplotype H2H8 was significantly higher than those of other eleven diplotypes (p<0.05). Our findings implied that CHBP2 and H2H8 of prolactin would be useful genetic markers in selection program on milk performance traits in Holstein Dairy Cattle.

Genetic and Environmental Trends for Milk Production Traits in Sheep Estimated with Test-day Model

  • Oravcova, Marta;Pesovicva, Dana
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1088-1096
    • /
    • 2008
  • Data from milk performance testing were used to analyze genetic and environmental trends for purebred Tsigai, Improved Valachian and Lacaune sheep. 103,715 (Tsigai), 212,962 (Improved Valachian) and 2,196 (Lacaune) test-day records gathered by the State Breeding Institute of the Slovak Republic entered the analyses. The respective pedigree data comprised 23,724 (Tsigai), 51,401 (Improved Valachian) and 438 (Lacaune) records. The multiple-trait, mixed model methodology was used to predict the breeding values for daily milk yield, fat and protein content and to estimate the fixed and remaining random effects assumed to affect the above mentioned traits, separately for each breed. The breeding values for daily milk yield were adjusted for 150-day standardized lactation length by multiplying with the constant 150, as the breeding goal of the selection scheme in Slovakian sheep is to increase 150-day milk production and constant heritability throughout the whole lactation is assumed. The genetic trends were expressed as changes in averages of breeding values across birth years of animals. For Tsigai and Lacaune breeds, cumulative genetic changes over the analyzed period were 3.8 and 5.1 kg for 150-day milk, 0 and -0.16% for fat content and 0 and -0.12% for protein content. For Improved Valachian breed, either a low (1.6 kg for 150-day milk yield) or zero (fat and protein content) cumulative genetic change was found. The environmental trends were calculated as averages of solutions for flock-test day effect across years and months in which measurements were taken. A distinctive cyclical pattern which reflected short-time variation in milk production traits was found. Possible explanations for this phenomenon are given and discussed.

The Relation between Genetic Polymorphism Markers and Milk Yield in Brown Swiss Cattle Imported to Slovakia

  • Chrenek, P.;Huba, J.;Vasicek, D.;Peskovicova, D.;Bulla, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1397-1401
    • /
    • 2003
  • The aim of this study was to determine genotypes of four genetic markers and to investigate their association with milk production traits in Brown Swiss cattle imported to Slovakia. The bovine $\kappa$-casein, $\beta$-lactoglobulin, growth hormone and prolactin genotypes of 107 cows were identified by polymerase chain reaction. Effects all four genetic markers on milk, fat, protein and lactose yields and fat, protein and lactose percentage were estimated from a data set of 249 lactations. The frequency of desirable B allele of $\kappa$-casein gene to milk production was 0.46, alleles A of $\beta$-lactoglobulin gene was 0.55, allele and L of growth hormone gene was 0.45 and allele A and B of bovine prolactin gene were 0.61 and 0.39. The results of milk production obtained in our work showed that BB genotypes of $\kappa$-CN gene, AA genotypes of $\beta$-LG gene, LL genotypes of bGH gene were significantly associated with better milk production traits, mainly about the fat content. Association of a bovine prolactin genotypes with milk production were not found.

Genetic Parameters of Milk Yield and Milk Fat Percentage Test Day Records of Iranian Holstein Cows

  • Shadparvar, A.A.;Yazdanshenas, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1231-1236
    • /
    • 2005
  • Genetic parameters for first lactation milk production based on test day (TD) records of 56319 Iranian Holstein cows from 655 herds that first calved between 1991 and 2001 were estimated with restricted maximum likelihood method under an Animal model. Traits analyzed were milk yield and milk fat percentage. Heritability for TD records were highest in second half of the lactation, ranging from 0.11 to 0.19 for milk yield and 0.038 to 0.094 for milk fat percentage respectively. Estimates for lactation records for these traits were 0.24 and 0.26 respectively. Genetic correlations between individual TD records were high for consecutive TD records (>0.9) and decreased as the interval between tests increased. Estimates of genetic correlations of TD yield with corresponding lactation yield were highest (0.78 to 0.86) for mid-lactation (TD3 to TD8). Phenotypic correlations were lower than corresponding genetic correlations, but both followed the same pattern. For milk fat percentage no clear pattern was found. Results of this study suggested that TD yields especially in mid-lactation may be used for genetic evaluation instead of 305-day yield.

Genetic Variation of Growth Hormone Gene and Its Relationship with Milk Production Traits in China Holstein Cows

  • Zhou, Guo-li;Zhu, Qi;Jin, Hai-guo;Guo, Shan-li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.315-318
    • /
    • 2006
  • Associations were analysed between polymorphisms localized in intron 3 of the growth hormone gene (GH-MspI) and milk production traits of 543 China Holstein cows. A PCR-RFLP method was used for identification of genotypes. The following frequencies of genotypes and alleles were found: 0.77, 0.21 and 0.02 for +/+, +/- and -/-, respectively, and 0.87 and 0.13 for $GH^+$ and $GH^-$, respectively. Significant differences between herds were observed in the frequencies of both genotypes and alleles. The results of least squares analysis showed that in all three lactation phases the GH +/+ cows yielded most milk (p<0.01 for lactation I and p<0.05 for lactations II and III), whereas +/- cows showed higher milk fat content than +/+ individuals (p<0.05 for lactation I and II, and p<0.01 for lactation III). The +/+ cows yielded more fat than +/- individuals (p<0.01 only in lactation I). The +/+ cows yielded more milk protein than +/- individuals (p<0.01 for lactation I, II, and III). The +/+ cows produced milk of higher protein content than that of +/- individuals (p<0.05 only in lactation II). Based on these results, we conclude that the +/+ of GH locus should be the favored genotype in China Holstein cow breeds for use in marker-assisted selection programmes.

Genetic Parameters of Milk β-Hydroxybutyric Acid and Acetone and Their Genetic Association with Milk Production Traits of Holstein Cattle

  • Lee, SeokHyun;Cho, KwangHyun;Park, MiNa;Choi, TaeJung;Kim, SiDong;Do, ChangHee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1530-1540
    • /
    • 2016
  • This study was conducted to estimate the genetic parameters of ${\beta}$-hydroxybutyrate (BHBA) and acetone concentration in milk by Fourier transform infrared spectroscopy along with test-day milk production traits including fat %, protein % and milk yield based on monthly samples of milk obtained as part of a routine milk recording program in Korea. Additionally, the feasibility of using such data in the official dairy cattle breeding system for selection of cows with low susceptibility of ketosis was evaluated. A total of 57,190 monthly test-day records for parities 1, 2, and 3 of 7,895 cows with pedigree information were collected from April 2012 to August 2014 from herds enrolled in the Korea Animal Improvement Association. Multi-trait random regression models were separately applied to estimate genetic parameters of test-day records for each parity. The model included fixed herd test-day effects, calving age and season effects, and random regressions for additive genetic and permanent environmental effects. Abundance of variation of acetone may provide a more sensitive indication of ketosis than many zero observations in concentration of milk BHBA. Heritabilities of milk BHBA levels ranged from 0.04 to 0.17 with a mean of 0.09 for the interval between 4 and 305 days in milk during three lactations. The average heritabilities for milk acetone concentration were 0.29, 0.29, and 0.22 for parities 1, 2, and 3, respectively. There was no clear genetic association of the concentration of two ketone bodies with three test-day milk production traits, even if some correlations among breeding values of the test-day records in this study were observed. These results suggest that genetic selection for low susceptibility of ketosis in early lactation is possible. Further, it is desirable for the breeding scheme of dairy cattle to include the records of milk acetone rather than the records of milk BHBA.

Production Characteristics of Nili-Ravi Buffaloes

  • Khan, R.N.;Akhtar, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.56-60
    • /
    • 1999
  • Production and reproduction data of 47 Nili-Ravi buffaloes (162 records) were analyzed with regression techniques. Average lactation milk yield was $2,020.04{\pm}44.59$ liters, lactation length $277.42{\pm}5.70$ d and calving interval $467.10{\pm}11.58$ d. The ranges for these parameters respectively were : 609-3591 lit, 122-614 d and 228-982 d. Year of calving and lactation length had significant effect on total milk yield (p < 0.01), whereas other factors such as month of calving, lactation number and calving interval had no effect on total lactation milk yield. Year of calving had influenced significantly other traits (p < .01) such as calving interval and lactations completed. This indicated considerable environment role in buffalo productivity. Effect of month of calving on total lactation milk yield and other traits was however, found to be non-significant. Nili-Ravi buffaloes produced maximum milk during their first three lactations as compared to subsequent lactations. Regression model explained 40 percent variation in total lactation milk yield due to factors analyzed : animal (dam), year and month of calving lactation length and calving interval.

Genetic Relationships between MUN, and Predicted DCPun in Hokkaido Holstein Cows

  • Nishimura, Kazuyuki;Miura, Shinya;Suzuki, Mitsuyoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1209-1216
    • /
    • 2005
  • This study aimed to use field data collected by the Hokkaido Dairy Cattle Milk Recording and Testing programs to estimate genetic parameters for concentration of milk urea nitrogen (MUN) and predicted Digestive Crude Protein Percentage of requirement (DCPun). Edited data consisted of 5,797,500 test-day records of MUN and yields of milk, fat, and protein obtained from 783,271cows in Holstein herds in Hokkaido, Japan. Data were divided into four datasets; for the first, second, third and fourth lactations. Two analyses were performed on data from each lactation. First, ANOVA was used to estimate the significance of the effects of several environmental factors on MUN and DCPun, after absorbing the Herd-Test-Day (HTD) effects. The effects of DIM and age.season effects had significant impact on MUN and DCPun. The second used a multi-traits repeatability model (MTRM) to estimate heritabilities and genetic correlations of milk with MUN and DCPun. Heritability estimates for MUN and DCPun in the first, second, and third lactations were 0.21:0.16, 0.20:0.16, and 0.20:0.18, respectively. Genetic correlations for milk with MUN and DCPun in the first, second, and third lactations were 0.02 - 0.17, and -0.25 - -0.39, respectively. The results indicate that MUN and DCPun are possibly effective tools for improving the energy balance, but that the relationships between MUN and other economically important traits such as feed efficiency, metabolic disease and fertility are still necessary.

Estimation of genetic parameters and trends for production traits of dairy cattle in Thailand using a multiple-trait multiple-lactation test day model

  • Buaban, Sayan;Puangdee, Somsook;Duangjinda, Monchai;Boonkum, Wuttigrai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1387-1399
    • /
    • 2020
  • Objective: The objective of this study was to estimate the genetic parameters and trends for milk, fat, and protein yields in the first three lactations of Thai dairy cattle using a 3-trait,-3-lactation random regression test-day model. Methods: Data included 168,996, 63,388, and 27,145 test-day records from the first, second, and third lactations, respectively. Records were from 19,068 cows calving from 1993 to 2013 in 124 herds. (Co) variance components were estimated by Bayesian methods. Gibbs sampling was used to obtain posterior distributions. The model included herd-year-month of testing, breed group-season of calving-month in tested milk group, linear and quadratic age at calving as fixed effects, and random regression coefficients for additive genetic and permanent environmental effects, which were defined as modified constant, linear, quadratic, cubic and quartic Legendre coefficients. Results: Average daily heritabilities ranged from 0.36 to 0.48 for milk, 0.33 to 0.44 for fat and 0.37 to 0.48 for protein yields; they were higher in the third lactation for all traits. Heritabilities of test-day milk and protein yields for selected days in milk were higher in the middle than at the beginning or end of lactation, whereas those for test-day fat yields were high at the beginning and end of lactation. Genetics correlations (305-d yield) among production yields within lactations (0.44 to 0.69) were higher than those across lactations (0.36 to 0.68). The largest genetic correlation was observed between the first and second lactation. The genetic trends of 305-d milk, fat and protein yields were 230 to 250, 25 to 29, and 30 to 35 kg per year, respectively. Conclusion: A random regression model seems to be a flexible and reliable procedure for the genetic evaluation of production yields. It can be used to perform breeding value estimation for national genetic evaluation in the Thai dairy cattle population.