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Estimation of genetic parameters and trends for production  
traits of dairy cattle in Thailand using a multiple-trait  
multiple-lactation test day model
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Objective: The objective of this study was to estimate the genetic parameters and trends 
for milk, fat, and protein yields in the first three lactations of Thai dairy cattle using a 3-trait,-
3-lactation random regression test-day model. 
Methods: Data included 168,996, 63,388, and 27,145 test-day records from the first, second, 
and third lactations, respectively. Records were from 19,068 cows calving from 1993 to 2013 
in 124 herds. (Co) variance components were estimated by Bayesian methods. Gibbs sampling 
was used to obtain posterior distributions. The model included herd-year-month of testing, 
breed group-season of calving-month in tested milk group, linear and quadratic age at calving 
as fixed effects, and random regression coefficients for additive genetic and permanent 
environmental effects, which were defined as modified constant, linear, quadratic, cubic 
and quartic Legendre coefficients. 
Results: Average daily heritabilities ranged from 0.36 to 0.48 for milk, 0.33 to 0.44 for fat 
and 0.37 to 0.48 for protein yields; they were higher in the third lactation for all traits. Heri
tabilities of test-day milk and protein yields for selected days in milk were higher in the middle 
than at the beginning or end of lactation, whereas those for test-day fat yields were high at 
the beginning and end of lactation. Genetics correlations (305-d yield) among production 
yields within lactations (0.44 to 0.69) were higher than those across lactations (0.36 to 0.68). 
The largest genetic correlation was observed between the first and second lactation. The 
genetic trends of 305-d milk, fat and protein yields were 230 to 250, 25 to 29, and 30 to 35 kg 
per year, respectively. 
Conclusion: A random regression model seems to be a flexible and reliable procedure for 
the genetic evaluation of production yields. It can be used to perform breeding value estima
tion for national genetic evaluation in the Thai dairy cattle population.
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INTRODUCTION 

The breeding improvement program of dairy cattle in Thailand has been established for 
almost 60 years. It started from the establishment of an artificial insemination (AI) service 
in 1956. In the beginning, both live purebred dairy cattle and frozen semen were imported 
from temperate countries. The frozen semen was crossed with Thai native cattle to produce 
dairy crossbreeds. Nowadays, through selection and inter se mating, Thailand has tried to 
develop its own tropical dairy breed based on the Holstein Friesian (HF) and Thai native 
cattle. The HF was selected to be the predominant breed according to its size and milk ability, 
which is considered suitable to the local marketing system and socio-economic conditions 
of Thailand. At present, dairy crossbreds with ≥87.5% HF blood levels are the main popu-
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lation in Thailand. 
  In 2018, the Thai dairy cattle population was reported to 
be 623,427 heads with 283,089 cows on 17,925 farms, with a 
raw milk production of around 3,000 tons per day [1]. The 
population size and milk production have increased by about 
12% and 30%, respectively, from 2004 to 2018 in Thailand. 
Most dairy farmers (80%) are smallholders with an average 
of 30 heads per farm, including calves, heifers and cows [1], 
whereas there are few dairy farms with large commercial units. 
The size of dairy populations has been increasing through 
reproduction with AI within the country, rather than imports 
from foreign countries.
  Performance records (pedigree, breeding, milk production, 
milk quality records) and a progeny testing program, together 
with a semen production unit, were established and processed 
by the Department of Livestock Development (DLD) in 1969. 
With these activities, the first sire genetic evaluation in Thai-
land, using the herd-mate comparison method, was performed 
in 1985. However, the activities were only developed on a 
small scale with limited records. In 1990, the government 
of Thailand via the DLD, which plays the important role of 
developing a suitable breed for tropical conditions, approved 
a project named “Master Bull Project” to develop a full-scale 
progeny testing program. The project aims to promote a 
large-scale milk sampling and recording program throughout 
the country. The objective of the project is to run an effective 
progeny testing program to select the elite sires with inherited 
genetics suitable for tropical conditions. Up to the present, 
the genetic evaluation for production traits in dairy cattle 
has been used to test day (TD) records with test-day models 
(TDMs) instead of lactation models.
  Among various TDMs, a TD production with a random 
regression model (RR-TDM) has been proven to increase the 
accuracy of breeding value predictions. In addition, cows can 
be evaluated with any number of tests and the model can ac-
count for different genetic, permanent environmental (PE) 
and residual (R) variances over the course of lactation. This 
model has been widely implemented in the national genetic 
evaluations of dairy cows in many countries, and is being 
developed in many other countries, from fitting various func-
tions to model additive genetic lactation curves, especially 
a multiple-trait, multiple-lactation TDM fitting random re-
gression [2-4]. Legendre orthogonal polynomials seem to 
efficiently describe the evolution of milk yields over the com-
plete lactation of dairy cows under different management 
conditions [5,6].
  The analysis of multiple-trait, multiple-lactation data has 
shown that genetic correlations among traits in different lac-
tations are less than consistent [7], indicating that each trait 
for different lactation performances is more of a separate trait 
than has been appreciated. Furthermore, records of second 
and later lactations provide more complete information on 

the cows’ lifetime performance than those from the first lac-
tation alone.
  In Thailand, some TDM studies have used only single 
lactation TDMs or only one trait in a small data set [8,9]. 
However, the estimation of genetic parameters and trends 
from multiple-lactations or multiple-traits, multiple-lacta-
tions with a large data set of production traits has not been 
reported. The adoption of a RR-TDM with multiple traits, 
multiple lactations as the official genetic evaluation model 
for production traits is required to improve the efficiency 
of the selection program for Thai dairy cattle.
  Therefore, the objective of this study was to present some 
results (genetic parameters and trends for milk production) 
from the application of multiple-trait, multiple-lactation ran-
dom regression TDMs to a national genetic evaluation system 
for the production traits of a tropical dairy population, like 
in Thailand.

MATERIALS AND METHODS 

Data 
The TD records of Thai dairy cows from the first three lacta-
tions, with calving between 1993 and 2013, were obtained 
from the dairy database of the Bureau of Biotechnology in 
Livestock Production (BBLP), DLD. To obtain data sets with 
a consistent size, the following records were included: age 
at calving was restricted to 18 to 48, 30 to 60, and 41 to 75 
months for the first, second and third lactations respectively; 
an interval of between 5 and 35 days from parturition to the 
first TD; daily milk yields between 2 and 40 kg; at least 5 
TD records per lactation; a minimum of 150 days in milk 
(DIM). Furthermore, all three traits (milk, fat, protein yield) 
were required for each TD. All third lactation cows were 
required to have first and second lactation records. Like-
wise, the second lactation cows were required to have first 
lactation records. Additionally, the sires for the cows in the 
dataset were identified.
  After applying these criteria, a total of 168,996, 63,388, and 
27,145 TD records (milk, fat and protein yield) of the first, 
second and third lactations, respectively, measured in differ-
ent calendar months within herds from 29,230 lactations, 
which were daughters of 1,116 sires belonging to 124 herds, 
were left to be analyzed. Ancestors of cows in the final data 
set were traced back in pedigree as far as the parents were 
known. Furthermore, the numbers of TD records for milk, 
fat and protein yields were not equal because fat and protein 
yields were missing in some TD due to technical reasons.
  The breed groups were classified into three groups using 
the percentage of Holstein Friesian (HF) blood level: <87.5% 
HF, 87.50% HF to 93.75% HF and >93.75% HF. Because dairy 
cattle in Thailand used up-grading system to increase milk 
yield and expected <87.5% HF group provide low milk yield, 
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87.50% HF to 93.75% HF group provide medium milk yield 
and >93.75% HF group provide high milk yield. The months 
of milk testing were divided into 12 months, as follows: Jan-
uary to December. Calving seasons were classified into three 
groups: winter (November to February), summer (March to 
June) and rainy season (July to October). Details of the final 
data file are given in Table 1.

Model
Data were analyzed with a 3-trait, 3-lactation RR-TDM. The 
matrix notation of the model is 

  y = Xb+Q(Za+Wp)+e

where y = a vector of milk, fat and protein yields; b = a vector 
of the fixed effects: herd-year-month of testing, breed-season 
of calving-month in tested milk group, and linear and qua-
dratic age at calving; a = a vector of RR coefficients for animal 
genetic (AG) effect; p = a vector of RR coefficients for per-
manent environmental (PE) effect; e = a vector of residual 
(R) effects; Q = a matrix of five modified Legendre polyno-
mials (constant, linear, quadratic, cubic, and quartic), as 
defined by Gengler et al [6]; and X, Z, and W = incidence 
matrices relating observations to various effects. The residual 
effects were taken to be independently distributed and with 
constant variance along DIM. Modeling of the herd-year-
month of testing effect as a fixed effect across lactations was 

Table 1. Summary information of test day data used for variance component estimations with standard deviations in parentheses 

Lactation 
  /TD records

Number Mean yield Peak curve

Cows TD Records HTM Milk (kg) Fat (kg) Protein (kg) DIM (d) Milk yield (kg)

1    Total 19,068 168,996 10,647 13.11 (4.45) 0.47 (0.19) 0.41 (0.15) 36–50 15.84 (4.25)
TD1 19,184
TD2 17,437
TD3 17,342
TD4 17,451
TD5 17,389
TD6 16,866
TD7 15,922
TD8 14,781
TD9 13,943
TD10 10,521
TD11 8,160

2    Total 7,110 63,388 7,774 13.97 (5.04) 0.51 (0.21) 0.44 (0.16) 36–50 17.56 (4.85)
TD1 7,660
TD2 6,902
TD3 6,820
TD4 6,808
TD5 6,797
TD6 6,675
TD7 6,290
TD8 5,732
TD9 4,916
TD10 3,727
TD11 1,061

3    Total 3,052 27,145 5,420 14.37 (5.22) 0.52 (0.22) 0.45 (0.17) 21–35 18.14 (4.96)
TD1 3,853
TD2 3,582
TD3 3,555
TD4 2,521
TD5 2,534
TD6 2,468
TD7 2,253
TD8 2,078
TD9 1,867
TD10 1,607
TD11 827

TD, test day; HTM, herd-year-month of testing.
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found to be advantageous in populations with small herd sizes 
[10]. Druet et al [3] also found that the use of fixed classes 
assured the best fit compared with parametric curves (Leg-
endre polynomials, Ali-Schaeffer curve and Wilmink curve). 
Due to their large number of parameters, fixed classes allow 
for more flexibility than parametric curves. In addition, any 
record in the parametric curve will influence the whole curve. 
In contrast, the influence of the data is local in the case of 
fixed classes. Also, classes of month of tested milk can be 
cross-classified with other effects with the potential to in-
fluence lactation shapes. The covariance structure of the 
model is:
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 = a Kro-
necker product function; G0 and P0 = 45×45 for (co)variance 
matrices of RR coefficients for AG and PE effects, respectively; 
I = an identity matrix (the number of cows with records); 
and R = 9×9 for diagonal matrix of residual variance ma-
trices corresponding to each trait with elements on lactation 
n assumed to be constant throughout the lactation.

Analysis
Variance (co)variance estimation: Estimates of (co)variance 
components for 3-trait, 3-lactation analyses were estimated 
using a Bayesian method via Gibbs sampling. Computa-
tions were performed using the software GIBBS2F90 [11]. 
A uniform prior distribution was assumed for each location 
parameter and variance component. A single chain length of 
200,000 was generated. The first 50,000 samples were dis-
carded as the burn-in period, which was determined based 
on visual inspection of the trace plots of selected (co)vari-
ance components. The thinning interval was set to 20, and 
the resulting 7,500 samples were used to calculate the pos-
terior means and standard deviations. Posterior means were 
used as a point estimate of the (co)variance components. The 
genetic and permanent environment (co)variance matrixes 
among all DIM and 305-d yields were obtained following 
the approach applied by Druet et al [3]. Heritabilities were 
defined as a ratio of the AG variance to the sum of AG, PE, 
and R variances for each day in milk from 5 to 305 days, and 
for cumulative 305-d yields. Correlations between traits i 
and j (both DIM and lactation) were computed as the ratio 
of the covariance cov (i, j) to the square root of the products 
of the variances of traits i and j.
  Breeding value estimation: Mixed model equations were 
solved by the preconditioned conjugate gradient method us-
ing BLUPF90 [11]. Solutions for AG effects (breeding value 
coefficient, a 
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 are five 
order of breeding value coefficient of animal ith for the first, 
second and third lactation as corresponding traits.
  Selection response estimation: Genetic trends of the Thai 
dairy population were obtained by a regression of the yearly 
average animal (sires and cows), calculated average of breed-
ing values of animals for that trait on that year. Obtain one 
number per year that was average of breeding value of ani-
mals on that year. With help of Excel 2010, software designed 
graphs showed genetic trend. Analyze regression model of 
SAS software was used to determine the signification of ge-
netic trend. Genetic gain for any trait was estimated from 
averages of breeding values so that difference between aver-
ages of breeding values of population in each trait at the end 
and the beginning of period indicated genetic gain.

RESULTS AND DISCUSSION 

Lactation curves
Figure 1A to 1C shows trajectories of the milk, fat and pro-
tein yields by DIM for each lactation of Thai dairy cattle. The 
curves were based on a 15-day moving average. The average 
peak curves for milk yields of the first, second and third lac-
tations were 43, 43, and 28 DIM, with milk yields of 15.84± 
4.25, 17.56±4.85, and 18.14±4.96 kg, respectively. There was 
a trend for the peak DIM decreasing and the peak yield in-
creasing as the lactation increased, which is similar to the 
lactation curves that were previously found in the literature, 
but lower than those presented by Miglior et al [12]. Differ-
ences from the previous studies could be the breed (purebred 
vs crossbred) and population differences. The first and second 
lactation curves took longer to reach the peak yield than the 
third lactation, indicating that it is more persistent than the 
others. Curves for fat and protein yield had the same patterns 
as those for milk yield.

Variance components
The estimation of the daily AG, PE, and R variances in the 
first three lactations for milk, fat and protein yields are shown 
in Table 2. Generally, all variances increased with lactation for 
all yield traits. Similar trends were reported in other studies 
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[4,5,12-16]. The AG variances in the second and third lacta-
tions were consistently higher than the PE and R variances 
for all traits, unlike in the first lactation. The difference be-
tween AG variances in the second and third lactations was 
small for all productions. However, its difference increased 
greatly from the first to second lactation. The difference in 
AG variances between primiparous and multiparous cows 
indicated that the expression of their genetic potential was 
higher in multiparous than primiparous cows.
  The pattern of AG variances by DIM across lactation for 
milk, fat and protein yields are shown in Figure 2. The AG 
variance for milk yield had the same pattern in all parities, 
which was high at DIM 80 after parturition, and then de-
creased exponentially. On the other hand, AG variance for 

fat and protein yields had a different trend as milk yield, being 
large at the beginning, small in the middle, and moderate at 
the end of lactation. Figure 3 shows the pattern of PE variances 
for all traits. The PE variances for milk yield in all lactations 
were highest at the beginning of lactation and subsequently 
decreased until the end of lactation, whereas PE variance for 
fat and protein yield were relatively high at the periphery of 
lactation.
  The trends in the AG and PE variance estimates for all yields 
throughout lactation obtained in this study were comparable 
to the trends found by Miglior et al [12] and de Roos et al [17], 
in which RR-TDM was also applied and Legendre polyno-
mials were used to describe the random curves of Chinese 
Holsteins and Dutch dairy cattle, respectively. However, the 

Figure 1. Lactation curve based on 15-day moving average by days in milk (DIM) for the first (square), second (triangle) and third (circle) lactations of Thai dairy cattle: (A) 
milk yield (kg); (B) fat yield (kg); and (C) protein yield (kg). 

Table 2. Average daily additive genetic, permanent environmental, and residual variance in the first three lactations for milk, fat and protein yields with standard deviations 
in parentheses

Trait×lactation
1 2 3

AG PE R AG PE R AG PE R

Milk yield (kg) 4.55 (1.12) 6.03 (1.17) 1.75 (0.00) 7.58 (2.11) 5.97 (1.73) 2.11 (0.00) 8.02 (2.27) 6.49 (1.81) 2.37 (0.00)
Fat yield ( × 1,000) (kg) 10.58 (3.35) 11.62 (3.06) 9.13 (0.00) 16.67 (5.67) 11.83 (4.31) 10.68 (0.00) 18.75 (6.45) 11.38 (4.07) 11.77 (0.00)
Protein yield ( × 1,000) (kg) 6.33 (1.57) 7.26 (1.54) 3.29 (0.00) 10.50 (2.99) 7.76 (2.38) 3.76 (0.00) 12.33 (3.82) 8.83 (2.38) 4.20 (0.00)

AG, additive genetic; PE, permanent environmental; R, residual.
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AG variance patterns in our study are different from those 
of Hammami et al [15], who reported higher estimates of 
AG variances for milk yield in the beginning and end than 
in the middle of lactation. Our patterns also differ from those 
of Muir et al [4] and Zavadilova et al [13], who found that 
AG and PE variances increased with progressive lactations. 
The decrease in AG variability after the onset of the first lac-
tation was the same as that from a study of Holstein cows 
[18]. Misztal et al [19] reported that the level and pattern of 
daily milk yield variances obtained by random regression 
models were heterogeneous. Pool et al [20] reported that the 

shape of the variance curves across lactation could be modeled 
with sufficient accuracy by using a third-order polynomial 
for the genetic part, but a fourth-order Legendre polynomial 
was needed for the PE part. López-Romero and Carabaño 
[21] also reported that smaller order polynomials could be 
more suitable for AG than for PE. The differences in variance 
shape through lactations were caused by using various orders 
of Legendre polynomials, which described random curves 
for the AG and PE effects. Besides this, the R variance was 
not assumed to be constant during lactation, as in our study. 
A constant R variance was assumed, which might somehow 

Figure 2. Additive genetic variance of milk, fat and protein yields for the first (square), second (triangle), and third (circle) lactations of Thai dairy cattle.

Figure 3. Permanent environmental variance of milk, fat and protein yields for the first (square), second (triangle), and third (circle) lactations of Thai dairy cattle.
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influence the estimation of the PE variance [22], but Olori et 
al [23] found that keeping a constant R variance produced a 
bias in the residual term in early lactation, without significantly 
affecting the estimates of the other variance components.
  For higher estimates of AG and PE variance in early lacta-
tion, we can discuss with postpartum condition. The transition 
period and the early lactation period are characterized by 
the mobilization of fat body reserves to cover the energy 
demands and include various metabolic and endocrine adap-
tations. Recent research has suggested considerable variation 
among high selected dairy cows for the release of energy 
fuels from stored adipose tissues [24]. Tamminga et al [25] 
observed great differences in fat mobilization among cows 
during the first 8 weeks of lactation, ranging from 8 to 57 
kg of body fat. Some cows can cope with metabolic stress 
very well, whereas others do not [26]. This ability to deal 
with metabolic disturbances apparently also depends on 
important individual cow factors and results from genetic 
variance. Postpartum management resulted in higher PE 
variance. The TD genetic variances for the production yield 
of multiparous cows were also higher than those of primip-
arous cows. In general, the increase of genetic variations 
among lactations could reflect differences in the genetic 
ability of cows to produce milk and the milk composition. 
We speculate that animals in later lactation expressed their 
genetic ability differently. One possible reason might be due 
to metabolic differences, inducing a differential nutrient par-
titioning between adult and first calving cows [27]. Moreover, 
primiparous cows need to divert nutrients for growth in order 
to achieve a mature size.

Heritability estimates
The average daily and 305-d yield heritability estimates for 
production yield traits in the first three lactations are shown 
in Table 3. Estimates of the average daily and 305-d herita-
bility for yield traits ranged from 0.33 to 0.48 and 0.46 to 0.64, 
respectively. They likely increased with lactation. Average 
daily heritabilities for milk yield (0.36 to 0.48) were gener-
ally higher than those for fat yield (0.33 to 0.44) and close 
to those for protein yield (0.37 to 0.48). These values were 
significantly higher than those presented in Polish black and 
whites [14], Italian Holsteins [4], Tunisian Holsteins [15], 

Chinese Holsteins [12], and Australian Holsteins [16]. Heri-
tability estimates of 305-d milk and fat yields were slightly 
lower than protein yield. The estimates of all production yields 
in the first lactation were similar to the results of de Roos et 
al [17] and Konstantinov et al [16]. de Roos et al [17] found 
that heritability estimates for all yields in the first three lac-
tations, using a random regression model with Legendre 
polynomials, were 0.53, 0.53, and 0.54 for milk yield, 0.51, 
0.50, and 0.54 for fat yield, and 0.46, 0.45, and 0.47 for pro-
tein yield, respectively. Konstantinov et al [16] found that 
the values of 305-d heritabilities in the first lactation were 
0.44, 0.48, and 0.39 for milk, fat and protein yield, respec-
tively. 
  In general, the level and pattern of milk yield heritabilities 
obtained from RR models are sensitive to the model applied; 
Misztal et al [19] and other recent studies have confirmed this 
fact. Nevertheless, large estimates of AG variances and heri-
tabilities are associated with high milk production levels [3, 
4,6,17]. Low AG and heritability estimates have been reported 
for populations with low to medium production levels [6,14]
  Heritabilities of TD production yields along the lactation 
trajectory for selected DIM in the first three lactations are also 
illustrated in Figure 4. The heritability estimates ranged from 
0.29 to 0.44, 0.38 to 0.55, and 0.34 to 0.56 for milk yields; from 
0.30 to 0.46, 0.38 to 0.51, and 0.37 to 0.52 for fat yields; and 
from 0.34 to 0.48, 0.44 to 0.53, and 0.44 to 0.56 for protein 
yields in the first, second and third lactations, respectively. 
The heritabilities in multiparous cows were higher than in 
primiparous cows, with a similar shaped curve for each pro-
duction trait. However, daily milk yield heritability patterns 
were different from daily fat and protein yields.
  Estimated heritabilities for daily milk yield were moderate 
at the early stage, increased to the highest heritability at the 
middle stages after parturition, and then gradually decreased 
until the late stage of lactation, whereas estimated heritabilities 
for fat and protein yield were relatively high at the periphery 
of lactation. The heritability curves for all production yield 
traits were similar to those for Dutch dairy cattle reported by 
de Roos et al [17]. However, these were different from other 
reports [4,12,15]. The differences in the heritability estimates 
for all production yields among the studies could be due to 
breed differences, the different types of models, and the effects 

Table 3. Average daily and 305-d heritabilities for milk, fat and protein yields during the first three lactations with standard error in parentheses

Trait×lactation
Average daily yield Cumulative1) 305-d yield

1 2 3 1 2 3

Milk yield 0.36 (0.04) 0.48 (0.04) 0.48 (0.07) 0.46 (0.03) 0.59 (0.03) 0.60 (0.05)
Fat yield 0.33 (0.03) 0.42 (0.03) 0.44 (0.05) 0.47 (0.03) 0.59 (0.03) 0.64 (0.06)
Protein yield 0.37 (0.03) 0.47 (0.03) 0.48 (0.04) 0.48 (0.03) 0.60 (0.03) 0.60 (0.07)

1) Cumulative 305-d yield was defined as the heritability of every trait over the first three lactations; values were obtained from the sum of (co)variances (days in milk =  5 to 
305).
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included within the model. In addition, the feeding system 
and heat stress in Thailand can explain the opposite herita-
bility shapes for production yields. Dairy farms in this study 
were distributed throughout the region of Thailand. Roughage 
sources for dairy cattle were by-products from agriculture, 
whole corn and grass, grass and rice straw in the north, cen-
tral, west and east, respectively. A separate feeding diet was 
operated in most of Thailand. Under this feeding system, the 
farmer used different high-concentrate rations based on the 
quantity and quality of roughages that were readily available. 
Moreover, dairy cattle were kept under an open house with 
high heat-humidity weather for years. Therefore, dairy cattle 
tried to adapt to production under the environment of Thai-

land in terms of naturally-produced forage. We might speculate 
that these factors indicate that dairy cattle in tropical regions 
express their genetic potential differently.

Genetic and permanent environmental correlations
The AG and PE correlations of 305-d production yields in 
the first three lactations are shown in Table 4. The estimated 
correlations varied depending on the yield traits, and there 
were all positive. In general, correlations between consecutive 
lactations were higher compared with those for lactations 
that were further apart. The AG correlations obtained be-
tween the yield traits in the first and second lactation (0.48 
to 0.81) were the largest among all genetic correlations. The 

Figure 4. Heritability estimates of test day of milk, fat and protein yields for the first (square), second (triangle), and third (circle) lactations of Thai dairy cattle.

Table 4. Genetic1) (AG, above diagonal) and permanent environmental2) (PE, below diagonal) correlations for 305-d yields (milk, fat, and protein) during the first three 
lactations

Trait×lactation
Milk yield Fat yield Protein yield

1 2 3 1 2 3 1 2 3

Milk yield
1 - 0.81 0.72 0.59 0.56 0.48 0.69 0.61 0.50
2 0.10 - 0.63 0.59 0.60 0.43 0.68 0.64 0.45
3 0.08 0.25 - 0.49 0.46 0.56 0.57 0.52 0.58

Fat yield
1 0.62 0.03 0.04 - 0.48 0.41 0.52 0.46 0.38
2 0.07 0.59 0.13 0.12 - 0.39 0.49 0.51 0.36
3 0.03 0.17 0.59 0.04 0.17 - 0.39 0.36 0.44

Protein yield
1 0.68 0.06 0.07 0.57 0.05 0.02 - 0.54 0.45
2 0.07 0.62 0.18 0.05 0.51 0.14 0.07 - 0.40
3 0.05 0.19 0.62 0.03 0.14 0.51 0.04 0.17 -

AG, additive genetic; PE, permanent environmental effects.
1) Standard deviations of genetic correlations ranged from 0.008 to 0.030.
2) Standard deviations of permanent environmental correlations ranged from 0.004 to 0.020.
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AG correlations between the second and third lactation 
ranged from 0.39 to 0.63, whereas correlations between the 
first and third lactation ranged from 0.41 to 0.72. Overall, 
genetic correlations (305-d yield) among production yields 
within lactations (0.44 to 0.69) were higher than those across 
lactations (0.36 to 0.68). The values ranged from 0.56 to 0.60 
between milk and fat yields, from 0.58 to 0.69 between milk 
and protein yields, and from 0.44 to 0.52 between fat and 
protein yields. The PE correlations (305-d production yields) 
between yield traits within lactations (0.57 to 0.68) were also 
higher than the genetic correlation across lactations (0.03 
to 0.19).
  Results from our study were in accordance with those of 
Muir et al [4] and Hammami et al [15], who used a multiple-
trait RR model in Italian Holsteins and Tunisian Holsteins, 
respectively, but with lower estimated values. However, a larger 
genetic correlation between milk and protein yield than be-
tween milk and fat yield was also reported by Jakobsen et al [2].
  The AG and PE correlations of production yields on dif-
ferent DIM within the first three lactations are shown in Table 
5. In general, genetic correlations of each production yield 
during the different stages of lactation were all positive. The 
correlations between yields on days that were close together 
were higher compared to those for days that were further 

apart. The AG correlation of milk yields over the first three 
lactations ranged from 0.46 to 0.55 for early, from 0.73 to 0.95 
for mid- and from 0.52 to 0.86 for late lactation. The AG cor-
relation of fat yield and protein yield followed the same trend 
as milk yield, ranging from 0.06 to 0.25 for early, from 0.47 
to 0.89 for mid- and from 0.00 to 0.34 for late lactation. There 
were high correlations of production yields between 65 DIM 
and 245 DIM, ranging from 0.73 to 0.95, from 0.51 to 0.89 
and from 0.45 to 0.89 for the milk, fat and protein yields, re-
spectively. The high correlations of production yields imply 
that selection to improve production traits in the mid stage of 
lactation was more rapidly achieved than in the other stages 
of lactation.
  Estimates of AG correlations between production yields 
on the same DIM in the first three lactations are shown in 
Figure 5. For all traits, the largest genetic correlations occurred 
between the first and second lactation, and the lowest was 
observed between the second and third lactation. The shapes 
of correlations across DIM showed a similar pattern for all 
traits. Generally, they increased from early lactation, fluc-
tuated in mid-lactation and decreased during late lactation. 
For milk and protein yield, the correlations between the same 
DIM in the consecutive lactations were below 0.94 at the 
beginning of lactation, between 0.70 and 0.93 in the middle 

Table 5. Estimates of genetic correlation1) (AG, above diagonal) and permanent environmental correlation2) (PE, below diagonal) of production yields on different days in 
milk (DIM) within the first three lactations

Trait×DIM
1 2 3

5 65 125 185 245 305 5 65 125 185 245 305 5 65 125 185 245 305

Milk yield
5 0.50 0.41 0.46 0.49 0.50 0.55 0.41 0.41 0.38 0.29 0.46 0.38 0.40 0.33 0.26
65 0.52 0.95 0.85 0.73 0.49 0.54 0.93 0.82 0.74 0.47 0.61 0.93 0.80 0.74 0.40
125 0.35 0.86 0.95 0.81 0.60 0.41 0.85 0.95 0.80 0.57 0.46 0.85 0.94 0.80 0.51
185 0.32 0.62 0.90 0.94 0.76 0.38 0.60 0.89 0.91 0.67 0.40 0.63 0.89 0.91 0.53
245 0.24 0.49 0.69 0.88 0.86 0.27 0.48 0.68 0.87 0.76 0.22 0.45 0.63 0.86 0.52
305 0.10 0.28 0.51 0.74 0.89 0.19 0.22 0.45 0.64 0.77 0.21 0.31 0.56 0.67 0.68

Fat yield
5 0.22 0.24 0.36 0.19 0.28 0.25 0.25 0.35 0.16 0.24 0.16 0.21 0.34 0.11 0.21
65 0.36 0.81 0.55 0.51 0.14 0.34 0.80 0.55 0.54 0.14 0.28 0.78 0.51 0.56 0.06
125 0.30 0.81 0.86 0.53 0.38 0.32 0.78 0.86 0.52 0.36 0.28 0.75 0.83 0.47 0.29
185 0.34 0.54 0.87 0.76 0.34 0.36 0.46 0.84 0.74 0.28 0.35 0.46 0.83 0.70 0.14
245 0.17 0.46 0.57 0.79 0.23 0.13 0.40 0.48 0.75 0.16 0.10 0.41 0.45 0.74 0.02
305 0.15 0.12 0.36 0.41 0.41 0.18 0.06 0.33 0.33 0.26 0.18 0.05 0.33 0.28 0.19

Protein yield
5 0.21 0.24 0.36 0.21 0.33 0.21 0.22 0.32 0.14 0.24 0.06 0.16 0.30 0.05 0.24
65 0.32 0.86 0.65 0.58 0.19 0.27 0.82 0.60 0.57 0.14 0.26 0.77 0.49 0.52 0.05
125 0.25 0.80 0.89 0.61 0.40 0.25 0.75 0.87 0.55 0.34 0.29 0.71 0.83 0.45 0.28
185 0.29 0.52 0.87 0.81 0.40 0.33 0.44 0.84 0.76 0.27 0.35 0.40 0.83 0.70 0.14
245 0.13 0.43 0.57 0.81 0.34 0.12 0.39 0.47 0.74 0.20 0.10 0.36 0.42 0.73 0.00
305 0.15 0.13 0.39 0.47 0.49 0.20 0.07 0.33 0.33 0.30 0.23 0.07 0.38 0.32 0.20

AG, additive genetic; PE, permanent environmental effects; DIM, days in milk.
1) Standard deviations of estimates for genetic correlations ranged from 0.008 to 0.000.
2) Standard deviations of estimates for permanent environmental correlations ranged from 0.004 to 0.020.
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of lactation, and below 0.74 at the end of lactation. However, 
for fat yields, the genetic correlation between the first and 
third lactations were moderate, but they were smaller, 0.70 
over the whole trajectory of lactations. 
  Among various lactations, similar shapes of correlation 
curves at the same DIM were also reported by Strabel and 
Jamrozik [14] and Hammami et al [15]. Berry et al [18] found 
a genotype by environment interaction for body condition 
score (BCS), implying that genes that influence BCS may 
differ according to nutritional (i.e. concentrate feeding level, 
grazing severity, and silage quality) or environmental man-
agement. Our study found that genetic correlations between 
all yields were moderate in distant lactations. We might spec-
ulate that our study indicated that production yields would 
be under the influence of a similar gene set. However, gene 
sets were limited in expression under the natural diversity in 
Thailand in later lactations. Furthermore, this study found 
that genetic correlations between fat yields were low in both 
distant lactations and consecutive DIM. Hammami et al 
[15] reported that high temperature and the lack of quality 
forage had an influence on the decline of fat more strongly 
than that of milk and protein. We might speculate that these 
factors limited the expression of identical gene sets in each 
DIM and lactation. 
  It should be noted that, in this study, there were no nega-
tive estimates between any of the selected DIM. Negative 
genetic correlations for selected DIM were reported in several 
studies [5,13]. The problem of selecting the best random 
regression model and related co-variance components is 
not trivial and has been discussed in several studies [3,21]. 
On one hand, it comes from the fact that different countries 
use different functions to describe the random curves. Al-

though Legendre polynomials have become a standard for 
this part of the model, there are differences in their order 
between different countries. For example, the fourth order is 
used in Canada [28] and the fifth order is used in the United 
Kingdom [29]. Overall, in this study, estimates of the genetic 
parameters were in good agreement with the literature values.

Genetic trends
Changes in the average EBVs for different 305-day produc-
tion yields of Thai dairy cattle in the first, second and third 
lactations, against birth year from 2001 to 2011, are present-
ed in Figure 6; the corresponding linear random regression 
coefficients are given in Table 6. Generally, the annual genetic 
trends of production yield were positive and increased as the 
lactation number increased. Milk yield of the third lactation 
was 10.83 and 9.96 kg higher than that of the first and second 
lactations, respectively, whereas the fat and protein yields of 
all lactations increased slightly. These trends demonstrate the 
effectiveness of selection for the improvement of milk, fat and 
protein yields. These results were consistent with a previous 
report [30], in which genetic trends for Thai dairy cattle were 
positive for milk, fat and protein yields, whereas those of 
milk component (fat and protein percentage) were close to 
zero or negative. The negative or zero genetic trends for fat 
and protein percentage are likely the result of a major em-
phasis on milk yield, with farmers neglecting fat and protein 
percentage in sire selection at the farm level over the past 
years. This condition could cause a correlated response for 
fat and protein percentages as a result of the selection for 
milk because of the probable negative correlation between 
milk yield and milk components [31]. Consequently, it could 
cause a slightly positive genetic trend in fat and protein yields. 

Figure 5. Genetic correlations of milk, fat and protein yields between days in milk (DIM) across the first and second (square), the first and third (triangle), and the second 
and third lactations (circle) of Thai dairy cattle.
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It is, therefore, necessary that, apart from milk yield, fat and 
protein percentage are also included in the breeding goals 
in order to optimize the genetic improvement of Thai dairy 
cattle.

CONCLUSION

Genetic parameters of the production yield of the Thai dairy 
cattle population using a multiple lactation random regression 
test-day animal model with Legendre polynomials described 
a production curve with similar trends as those from major 
reports that used the identical model on Holstein populations. 
Yield traits in all lactations had moderately heritabilities and 
genetic correlations among production yields within lacta-
tions were higher than those across lactations, suggesting 

that these traits can be used as an important index trait to 
improve production yields in Thai dairy cattle through se-
lection. Moreover, an improvement in high milk production 
will lead to the highest increase in fat and protein yields within 
lactations. Moreover, selection for high production yields in 
primiparous cows will lead to a further increase for multipa-
rous cows. Selection of candidate animals should be made 
based on EBVs to improve the production yields under the 
conditions of Thailand. Clearly, the estimates for parameters 
that were produced in this study are, therefore, likely to be 
useful as a preliminary step to developing national genetic 
evaluations for the production traits of the Thai dairy cattle 
population. In addition, research on issues not addressed in 
this study, such as the heterogeneity of variances, will even-
tually be required for the implementation of an internationally 
accepted genetic evaluation system.
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