• 제목/요약/키워드: Milk Proteins

검색결과 227건 처리시간 0.022초

우유 알레르기의 특성 및 저감화 방법에 대한 고찰 (Overview of Milk Allergens and Allergic Reaction Reduction Methods)

  • 김기환;설국환;오미화;박범영;김현욱
    • Journal of Dairy Science and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.67-73
    • /
    • 2013
  • Food allergy is defined as adverse reactions toward food mediated by aberrant immune mechanisms. Cow's milk allergy is one of the most common food allergies in childhood. This allergy is normally outgrown in the first year of life, however 15% of allergic children remain allergic. Cow's milk allergy seem to be associated with casein (${\alpha}_{s1}$-CN), ${\beta}$-lactoglobulin and whey protein. In addition to this, many other milk proteins are antigenic and capable of inducing immune responses. Various food processing affects the stability, structure and intermolecular interactions of cow milk proteins, as a result reduction the allergenic capacity. Heating, hydrolysis, chemical, proteolytic and other processes such as gamma-ray irradiation, high pressure, using probiotics treatments of milk to obtain hypoallergenic milk have been developed to reduce allergic reactions.

  • PDF

발효유제품의 유단백질 기능성 연구 동향 (Functional Properties of Milk Protein in Fermented Milk Products)

  • 이원재
    • Journal of Dairy Science and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.29-32
    • /
    • 2007
  • An understanding functional properties and molecular interactions of milk proteins was critical to improve qualities of fermented dairy products including yogurts and cheeses. Extensive rearrangements of casein particles were important factors to enhance whey separation in yogurt gel network. The use of high hydrostatic pressure treated whey protein as an ingredient of low fat processed cheese food resulted in the production of low fat processed cheese food with acceptable firmness and enhanced meltabilities. Milk protein-based nano particles produced by self-association of proteins could be better nutrient delivery vehicle than micro particle since particle size reduction in nano particles could lead to increased residence time and surface area available in GI tract.

  • PDF

Comparative Proteomic Analysis of Changes in the Bovine Whey Proteome during the Transition from Colostrum to Milk

  • Zhang, Le-Ying;Wang, Jia-Qi;Yang, Yong-Xin;Bu, Deng-Pan;Li, Shan-Shan;Zhou, Ling-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.272-278
    • /
    • 2011
  • Bovine whey protein expression patterns of colostrum are much different from that of milk. Moreover, bovine colostrum is an important source of protective, nutritional and developmental factors for the newborn. However, to our knowledge, no research has been performed to date using a comparative proteomic method on the changes in the bovine whey proteome during the transition from colostrum to milk. This study therefore separated whey protein of days 1, 3, 7 and 21 after calving using two dimension electrophoresis. Differentially expressed proteins at different collection times were identified using high-performance liquid chromatography in tandem with mass spectrometry (LC/MS) and validated by enzyme-linked immunosorbent assay (ELISA) in order to understand the developmental changes in the bovine whey proteome during the transition from colostrum to milk. The expression patterns of whey protein of days 1 and 3 post-partum were similar except that immunoglobulin G was down-regulated on day 3, and four proteins were found to be down-regulated on days 7 and 21 compared with day 1 after delivering, including immunoglobulin G, immunoglobulin M, albumin, and lactotransferrin, which are involved in immunity and molecule transport. The results of this study confirm the comparative proteomic method has the advantage over other methods such as ELISA and immunoassays in that it can simultaneously detect more differentially expressed proteins. In addition, the difference in composition of milk indicates a need for adjustment of the colostrum feeding regimen to ensure a protective immunological status for newborn calves.

우유단백질 유래 혈당 조절 기능성 펩타이드 (Anti-diabetic peptides derived from milk proteins)

  • 김선영;임지영
    • 식품과학과 산업
    • /
    • 제51권4호
    • /
    • pp.302-312
    • /
    • 2018
  • 우유 단백질과 같은 식이 단백질은 분해되기 전에는 대사 조절을 위한 생물학적인 활성을 나타내지 않으나 장에서의 소화과정이나 단백질 분해 효소, 또는 미생물 발효 과정을 통하여 저분자의 펩타이드로 분해되어 수용체 결합을 통하여 생체조절기능을 발휘하거나, 체내 대사의 조절에 관여하는 다양한 효소의 활성을 억제함으로써 기능을 발휘하기도 한다. 우유단백질의 섭취에 의한 혈당 감소 효과는 여러 연구자에 의하여 확인되었으며, 그 작용 기전은 주로 분지사슬 아미노산에 의한 인슐린 분비촉진 기전과 음식물의 소화 과정 중 위장관에서 췌장에서 인슐린 분비 촉진, glucagon의 분비를 감소시켜 혈당을 감소시키는 역할을 담당하는 내분비 호르몬의 일종인 GLP-1의 작용에 영향을 미치는 기전을 생각할 수 있다. 생리적 환경에서 GLP-1은 GLP-1을 가수분해하여 불활성화시키는 DPP-4에 의하여 빠르게 분해되어 생물학적 활성을 소실하기 때문에 DPP-4 억제제는 제 2형 당뇨의 새로운 치료 방법으로써 주목을 받고 있다. DPP-4의 억제 효능을 가진 다수의 기능성 펩타이드가 우유단백질의 분해에 의하여 생성됨이 보고되었으며 그 효능이 in vitro 연구는 물론 동물 모델을 이용한 연구에서도 증명되었다. 이상의 연구 결과를 근거로 할 때 우유 단백질 유래 DPP-4 억제 펩타이드는 인체 적용 연구를 통하여 혈당 조절에 도움을 주는 기능성 소재로 개발될 수 있는 충분한 가능성을 가지고 있다고 판단된다.

발효 유제품에서의 유단백질 기능성 연구 동향 (Functional Properties of Milk Protein in Fermented Milk Products)

  • 이원재
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과힉회 2007년도 추계학술발표대회
    • /
    • pp.31-37
    • /
    • 2007
  • An understanding functional properties and molecular interactions of milk proteins was critical to improve qualities of fermented dairy products including yogurts and cheeses. Extensive rearrangements of casein particles were important factors to enhance whey separation in yogurt gel network. The use of high hydrostatic pressure treated whey protein as an ingredient of low fat processed cheese food resulted in the production of low fat processed cheese food with acceptable firmness and enhanced meltabilities. Milk protein-based nano particles produced by self-association of proteins could be better nutrient delivery vehicle than micro particle since particle size reduction in nano particles could lead to increased residence time and surface area available in GI tract.

  • PDF

우유단백질의 분석을 위한 효소면역측정법 (An Enzyme-Linked Immunosorbent Assay for Detection of Milk proteins in Food)

  • 손동화;김현정;배근원;김순미
    • 한국식품과학회지
    • /
    • 제32권3호
    • /
    • pp.564-569
    • /
    • 2000
  • 가공식품중의 우유단백질 분석을 위하여 효소면역측정법, ELISA를 개발하였다. 특이 항체를 생산하기 위해 열에 안정하고 우유의 주요한 단백질인 ${\alpha}_{s1}-CN$을 토끼에 면역하였다. 항${\alpha}_{s1}-CN$ 항체를 이용하여 간접경합 ELISA를 실시한 결과 검출한계는 $0.1\;{\mu}g/mL$ 이었고 ${\alpha}_{s1}-CN$, skim milk, ${\beta}-CN$과 whey protein isolate에 대한 특이항체의 반응성은 각각 100%, 37%, 0.14%과 0.04% 이었다. 그러나 다른 우유단백질인, ${\beta}-lactoglobulin,\;{\alpha}-lactalbumin$, bovine serum albumin 과 대두단백질인 isolated soy protein 에 대해서는 거의 반응성을 보이지 않았다. 샌드위치 ELISA 결과는 검출한계가 $0.01\;{\mu}g/mL$로 간접경합 ELISA 에 비하여 10배 정도 민감해져 따라서 이를 시료 분석에 이용하였다. 시유에 1-10%의 whole CN을 첨가한 spike test 결과 whole CN의 평균 회수율이 94.8%(CV, 8.2%)으로 나타났다. 식품재료와 유가공 제품에 대한 whole CN의 정량분석을 실시한 결과 탈지유는 29%, WPI는 0.03%, 농후 요구르트는 0.25%였으며 가공치즈는 6.9%로 나타났다.

  • PDF

Association of ${\beta}$-Lactoglobulin Variants with Milk Yield and Composition in Dairy Cattle

  • Chung Eui-Ryong;Chung Ku-Young
    • 한국축산식품학회지
    • /
    • 제26권1호
    • /
    • pp.121-126
    • /
    • 2006
  • Major milk proteins have considerable variane which comes from substitution and deletions in their amino arid sequences. Variants in genes that code for milk proteins, such as ${\beta}$-lactoglobulin (${\beta}-LG$) have been established as genetic markers for milk production and milk protein composition in dairy cattle. The effect of ${\beta}-LG$ variant on milk production traits, such as milk yield. fat yield, protein yield, fat percentage and protein percentage, was estimated for 482 Holstein cows in the first lactation. The ${\beta}-LG$ variants were determined by PCR-RFLP technique at the DNA level. Single trait linear model was used for the statistical analysis of the data. Results of this study indicated that ${\beta}-LG$ variants affected significantly protein yield (p<0.05) and fat percentage (p<0.05). Animals with the AA variant produced 31kg of milk protein more than animals with the BB variant. On the contrary, cows with the BB variant had fat percentage higher by 0.35 and 0.32% compared with cows with the AA and AB variants, respectively. No associations between the ${\beta}-LG$ variants and milk yield, protein percentage and fat yield were found Therefore, milk production traits could be improved through ${\beta}-LG$ typing by increasing the frequency of A variant for protein yield or the frequency of B variant for fat content in Holstein dairy cattle population.

열처리에 의한 우유의 이화학적 품질변화에 관한 고찰 (A Review on the Change of Physicochemical Quality during Heating of Milk)

  • 정인경;인영민
    • Journal of Dairy Science and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.13-21
    • /
    • 2001
  • Milk can be regarded as a complete food, containing protein, fat, lactose, vitamins and minerals. Milk is heated for a variety of reasons. The main reasons are: to remove pathogenic organisms; to increase shelf-life. But, when milk is heated, many changes take place: denaturation of whey proteins and interaction with casein, Maillard browning, losses of vitamin and minerals. The addition of a additive and milk powder to flavor and taste may cause undesirable change of quality during heating milk. The reconstituted milk is the milk product resulting from the addition of water to the dried or condensed form in the amount necessary to re-establish the specified water solids ratio. Therefore, according to the increasement of consumption of processed milk, the necessity for study about the quality of processed milk mixed with reconstituted milk arose.

  • PDF

우유의 알레르기 유발물질 (Milk Allergens)

  • 김소영;오상석;함준상;설국환;김현욱;한상하;최은영;박범영;오미화
    • Journal of Dairy Science and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.17-22
    • /
    • 2012
  • Since the prevalence of allergies is increasing, food allergy is a major concern for consumers, as well as for the food industry. The foods that account for over 90% of all moderate to severe allergic reactions to food are milk, eggs, peanuts, soybeans, fish, shellfish, wheat, and tree nuts. Of these food allergens, milk is one of the major animal food allergens in infants and young children. Milk is the first food that an infant is exposed to; therefore, the sensitization rate of milk in sensitive individuals is understandably higher. The mechanisms involved in allergic reactions caused by this hypersensitivity are similar to those of other immune-mediated allergic reactions. The reactions occur in the gastrointestinal tract, skin, and respiratory tract, with headaches and psychological disorders occurring in some instances. The major allergenic proteins in milk are casein, ${\beta}$-lactoglobulin, and ${\alpha}$-lactalbumin, while some of the minor allergenic proteins are lactoferrin, bovine serum albumin, and immunoglobulin. Reliable allergen detection and quantification are essential for compliance with food allergen-labeling regulations, which protect the consumer and facilitate international trade.

  • PDF