• Title/Summary/Keyword: Military Networks

Search Result 272, Processing Time 0.02 seconds

GPS Jamming Resilient Location-based Routing for Unmanned Ground Vehicle Networks (무인 지상 차량 네트워크에서 GPS 재밍에 강인한 위치기반 라우팅)

  • Lee, Jinwoo;Jung, Woo-Sung;Kim, Yong-joo;Ko, Young-Bae;Ham, Jae-Hyun;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.432-440
    • /
    • 2015
  • UGVs(Unmanned Ground Vehicles) are robots that can substitute humans in reconnaissance operations of potentially dangerous and contaminated sites. Currently, there have been active research on utilizing UGVs in military environments. Much resrach has been focused on exploiting the weakness of topology-based routing and instead utilize location-based routing for the networking of UGVs. It is generally assumed that location-based routing methods can fully utilize the location information gained from GPS. However, this may not be possible in tactical environments due to enemy GPS jamming and LOS(Line of Sight) limitations. To solve this problem, we propose a location-based routing scheme utilizing low control message that can calibrate the location information using GPS information as well as location of neighboring UGV, movement direct and speed information. Also utilizing topology-based routing scheme to solve incorrect location information in GPS jamming region.

An Intrusion Detection Technique Suitable for TICN (전술정보통신체계(TICN)에 적합한 침입탐지 기법)

  • Lee, Yun-Ho;Lee, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1097-1106
    • /
    • 2011
  • Tactical Information Communication Network(TICN), a concept-type integrated Military Communication system that enables precise command control and decision making, is designed to advance into high speed, large capacity, long distance wireless relay transmission. To support mobility in battlefield environments, the application of Ad-hoc networking technology to its wireless communication has been examined. Ad-hoc network works properly only if the participating nodes cooperate in routing and packet forwarding. However, if selfish nodes not forwarding packets of other nodes and malicious nodes making the false accusation are in the network, it is faced to many threats. Therefore, detection and management of these misbehaving nodes is necessary to make confident in Ad-hoc networks. To solve this problem, we propose an efficient intrusion detection technique to detect and manage those two types of attacks. The simulation-based performance analysis shows that our approach is highly effective and can reliably detect a multitude of misbehaving node.

Efficient Data Storage & Query Processing Methods in Military Ubiquitous Sensor Networks (군 USN 환경에서 효율적인 데이터 저장 및 질의 처리 방법 연구)

  • Kwon, Young-Mo;Choi, Hyun-Sik;Chung, Yon-Dohn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.875-885
    • /
    • 2010
  • Recently, the role of Ubiquitous Sensor Network(USN) has been considered to be essential for supporting the near future Network Centric Warfare(NCW) and Tactical Information Communication Network(TICN). In this paper, we explore a set of data storage methods(external storage, local storage and data storage) and query processing methods in WSN. In particular, we focus on analyzing a novel data structure for supporting the local storage method, named the partial ordered tree(POT). The main idea behind POT is that sensor readings are usually correlated with the physical spatial domain. With the help of POT, only a small portion of sensor nodes participate in query processing tasks, and thus network lifetime is greatly increased. Through a series of simulation experiments, we demonstrate that the POT based local storage method clearly outperforms the existing data storage methods in terms of the energy-efficiency, which directly affects the network lifetime, for processing exact match queries, range queries and top-k queries.

Camouflaged Adversarial Patch Attack on Object Detector (객체탐지 모델에 대한 위장형 적대적 패치 공격)

  • Jeonghun Kim;Hunmin Yang;Se-Yoon Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.

Trust-Based Filtering of False Data in Wireless Sensor Networks (신뢰도 평가를 통한 무선 센서 네트워크에서의 거짓 데이타 제거)

  • Hur, Jun-Beom;Lee, Youn-Ho;Yoon, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.76-90
    • /
    • 2008
  • Wireless sensor networks are expected to play a vital role in the upcoming age of ubiquitous computing such as home environmental, industrial, and military applications. Compared with the vivid utilization of the sensor networks, however, security and privacy issues of the sensor networks are still in their infancy because unique challenges of the sensor networks make it difficult to adopt conventional security policies. Especially, node compromise is a critical threat because a compromised node can drain out the finite amount of energy resources in battery-powered sensor networks by launching various insider attacks such as a false data injection. Even cryptographic authentication mechanisms and key management schemes cannot suggest solutions for the real root of the insider attack from a compromised node. In this paper, we propose a novel trust-based secure aggregation scheme which identifies trustworthiness of sensor nodes and filters out false data of compromised nodes to make resilient sensor networks. The proposed scheme suggests a defensible approach against the insider attack beyond conventional cryptographic solutions. The analysis and simulation results show that our aggregation scheme using trust evaluation is more resilient alternative to median.

ATCS: An Adaptive TCP Coding Scheme for Satellite IP Networks

  • Dong, Wei;Wang, Junfeng;Huang, Minhuan;Tang, Jian;Zhou, Hongxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.1013-1027
    • /
    • 2011
  • In this paper we propose ATCS, a practical TCP protocol coding scheme based on network coding for satellite IP networks. The proposal is specially designed to enhance TCP performance over satellite networks. In our scheme, the source introduces a degree of redundancy and transmits a random linear combination of TCP packets. Since the redundant packets are utilized to mask packet loss over satellite links, the degree of redundancy is determined by the link error rates. Through a simple and effective method, ATCS estimates link error rates in real time and then dynamically adjusts the redundant factor. Consequently, ATCS is adaptable to a wide range of link error rates by coding TCP segments with a flexible redundancy factor. Furthermore, the scheme is compatible with traditional TCP variants. Simulation results indicate that the proposal improves TCP performance considerably.

Security Model for Tree-based Routing in Wireless Sensor Networks: Structure and Evaluation

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1223-1247
    • /
    • 2012
  • The need for securing Wireless Sensor Networks (WSNs) is essential especially in mission critical fields such as military and medical applications. Security techniques that are used to secure any network depend on the security requirements that should be achieved to protect the network from different types of attacks. Furthermore, the characteristics of wireless networks should be taken into consideration when applying security techniques to these networks. In this paper, energy efficient Security Model for Tree-based Routing protocols (SMTR) is proposed. In SMTR, different attacks that could face any tree-based routing protocol in WSNs are studied to design a security reference model that achieves authentication and data integrity using either Message Authentication Code (MAC) or Digital Signature (DS) techniques. The SMTR communication and processing costs are mathematically analyzed. Moreover, SMTR evaluation is performed by firstly, evaluating several MAC and DS techniques by applying them to tree-based routing protocol and assess their efficiency in terms of their power requirements. Secondly, the results of this assessment are utilized to evaluate SMTR phases in terms of energy saving, packet delivery success ratio and network life time.

Mutual Friendly Force Identification Protocol based on Hash-Chain for Personal Combat Systems

  • Lee, Jongkwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3858-3869
    • /
    • 2020
  • In this paper, we propose a hash-chain based friendly force identification protocol for personal combatants equipped with a personal combat system in a tactical wireless network. It is imperative in military operations to effectively and quickly identify friendly forces. If the identification of friendly forces is not correct, this can cause friendly fire. In current ground operations, the identification of friendly forces by personal combatants is neither secure nor safe. To address this issue, the proposed protocol uses a hash-chain to determine if a detected person is friendly. Only friendly forces with the same materials that are assigned before they deploy can construct an initial hash-chain. Moreover, the hash-chain is changed at specific times. The performance of the proposed protocol is evaluated on the assumption that the secret key is leaked, which is the worst scenario in the security research field. We verify that the proposed protocol is secure for the various attack scenarios, such as message replay attack, fabrication attack, and Denial of Service attack.

Ensemble Learning for Underwater Target Classification (수중 표적 식별을 위한 앙상블 학습)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1261-1267
    • /
    • 2015
  • The problem of underwater target detection and classification has been attracted a substantial amount of attention and studied from many researchers for both military and non-military purposes. The difficulty is complicate due to various environmental conditions. In this paper, we study classifier ensemble methods for active sonar target classification to improve the classification performance. In general, classifier ensemble method is useful for classifiers whose variances relatively large such as decision trees and neural networks. Bagging, Random selection samples, Random subspace and Rotation forest are selected as classifier ensemble methods. Using the four ensemble methods based on 31 neural network classifiers, the classification tests were carried out and performances were compared.

The Incapacition Method of Power System Assessing Transient Stability Index and Voltage Drop/Rise Duration Index (계통 안정도 모의를 통한 전력계통의 무력화 방안)

  • Lim, Jae-Sung;Kang, Hyun-Koo;Kim, Taek-Won;Moon, Seung-Il;Lim, Wan-Khun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.532-539
    • /
    • 2009
  • When assailing some area, it is important to consider targeting power system. This paper describes effective method that power networks are incapacitated based on assessing TSI and VDI. For this, we compose realistic scenario and analyze the simulation results in a view of stability. The simulation results show the destruction effects when occur the contingency in the specified area. To perform this process, the simulation tool PSS/E and DSAT are used.