• Title/Summary/Keyword: Mild wear

Search Result 76, Processing Time 0.029 seconds

Development of mechanistic model for cutting force prediction considering cutting tool states in face milling (정면밀링공정에서 공구상태 변화를 고려한 절삭력예측 모델의 개발)

  • Lee, S.S.;Kim, H.S.;Lee, Y.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.63-73
    • /
    • 1995
  • A mechanistic force system model considering the flank wear for the face milling process has been developed. The model predicts variation of the cutting forces according to flank wear in face milling over a range of cutting conditions, cutter geometries and cutting process geometries including relative positions of cutter to workpiece and rounouts. Flycutting and multitoth cutting teste were conducted on SS41 mild steel with sintered carbide tool. In order to verify the mechanistic force model considering the flank wear of cutting tools, a series of experiments was performed with single and multitooth cutters in various cutting conditions. The results show good agreement between the predicted and measured cutting force profiles and magnitudes in time and frequency domains.

  • PDF

Effect of Matrix Phase on the Abrasive Wear Behavior of the High Cr White Iron Hardfacing Weld Deposites (고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 기지상의 영향)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.114-124
    • /
    • 1998
  • The effect of matrix phase (austenite, pearlite, martensite) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iorn hardfacing weld deposites has been investigated. In order to examine matrix phase, a series of alloys with different matrix phase by changing the ratio of Cr/C system by heat treatment were employed. The alloys were deposited twice on a mild steel plate using self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test(RWAT). Even though formation of pearlite phase in the matrix showed higher hardness than that of austenite, there was no observable difference in wear resistance between the pearlite and austenite phase for the same amount of chromium-carbide in the matrix. On the other hand, the formation of martensitic phase,, from heat treated austenitic alloys (high content of Cr), enhanced wear resistance due to its fine secondary precipitates.

  • PDF

Investigation and Analysis of the Occurrence of Rail Head Checks

  • Jin, Ying;Aoki, Fusayoshi;Ishida, Makoto;Namura, Akira
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.43-49
    • /
    • 2009
  • Wear and rolling contact fatigue (RCF) defects are most important causes of rail damage, and often interaction competitive at present railway track. Head check is one of rolling contact fatigue (RCF) defects, and generally occurs in mild circular curves and transition curves that are set at both ends of sharp circular curves. Wear tends to limit the crack growth of head checks by removing the material from the RCF surface. In order to clarify the conditions of the occurrence and growth of head checks, the authors measured the interacting forces between wheels and rails and the angle of attack of wheelset, and carried out contact analyses using the actual profile data of wheels and rails. The effects of the lateral force, the contact geometry, and the wear rate at rail gauge comer on the formation of head checks were also analyzed by using the worn profiles of actual wheels and rails and the data obtained by a track inspection car. Some specific range of wear rate at the gauge comer was identified as having close relation with occurrence of head checks.

  • PDF

Tribological Properties of Nanoporous Structured Alumina Film (나노기공구조를 가진 알루미나필름의 트라이볼로지 특성)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Ahn, Hyo-Sok;Hahn, Jun-Hee;Woo, Lee
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.

The Effect of Sursulf Treating Time and Traveling Speed during Induction Hardening on Hardness and Wear Characteristics of Low Carbon Steel Combined-Heat-Treated (Sursulf 처리후 고주파 표면경화된 저탄소강의 경도 및 마모특성에 미치는 Sursulf 처리시간 및 고주파 경화 이송속도의 영향)

  • No, Y.S.;Kim, Y.H.;Lee, P.H.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 1989
  • This study has been performed to investigate into some effects of the Sursulf treatment time and the traveling speed of surface hardening treatment on the hardness and the wear characteristics by applying the combined heat treating techniques of Sursulf process followed by induction hardening treatment to mild steel. It has been shown that increasing the Sursulf treatment time increases the case depth, but both hardness and wear resistance are not considerably improved. When the combined heat treating technique of high frequency induction heating after Sursulf treatment is applied, an improvement in case depth as well as wear resistance is obtained. In particular, the hardness in diffusion zone is greatly increased due mainly to the formation of martensite and possibly lower bainite. Iron oxides formed during induction heating and subsequent water spray cooling in the outermost part of compound layer may be considered to cause some increases in hardness and wear resistance.

  • PDF

A Study on the Rolling Bearing Failure Mode of Automotive Transaxle(II) -Tapered Roller Bearing for Differential Unit (자동차 변속기용 구름베어링의 파손현상 고찰(II) - 차동장치용 테이퍼 로울러 베어링)

  • Hyeon, Jun-Su;Park, Tae-Jo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.162-168
    • /
    • 2002
  • This paper shows the failure(wear) phenomena of differential bearings in the transaxle of passenger cars and investigate their characteristics. It was found that the wear mechanism was mild abrasive wear caused by the presence of particles in the gear box. The sides of the outer raceway was more neared than center of it, so it is showed as if the crowning of outer raceway are increased. With close examination of the failed bearing, various countermeasures could be suggested.

  • PDF

The Heat Treatment Characterization of Plasma Sprayed Alumina Coatings (플라즈마 용사법에 의한 $Al_2$O$_3$ 피복층의 열처리효과에 관한 연구)

  • 오익현;김한산;김수식
    • Journal of Surface Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.134-142
    • /
    • 1994
  • $Al_2O_3$coatings on mild steel substrate by plasma spray process were produced to evaluate microstructural characterization and mechanical properties. As-coated $Al_2O_3$coating samplessd were subjected to two heat treat-ment conditions : ⅰ) annealing under vacuum circumstance, ⅱ) hot press treated condition. The two heat treat-ed coatings were investigated in terms of microhardness, adhesion strength, wear resistance, porosity forma-tion, and microstructures. In the case of the coatings which were subject to preparation step ⅰ, the porosity in the coating was decreased with the increase of temperature ($700^{\circ}C$-$1100^{\circ}C$), and the wear resistance, microhardnesss and adhesion strength were increased with the increase of temperature. On the other hand, in the case of the coatings which were subject to preparation step ⅱ, wear resistance and adhesion strength were improved with the increase of temperature and pressure. Experimental measurements of coatings which were produced by both preparation conditions were enhanced compare to those of as-coated coatings.

  • PDF

Tribological Performance of Laser Textured Translucent Duplex α/β-Sialon Composite Ceramics

  • Joshi, Bhupendra;Tripathi, Khagendra;Gyawali, Gobinda;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.180-181
    • /
    • 2014
  • Optically translucent Sialon ceramics was fabricated by hot pressed sintering method. The Sialon ceramics was laser textured and their tribological performance was observed. Starved lubrication method was applied on Sialon ceramics with different dimple spacing under a load of 10N and at room temperature. The material having high dimple spacing ($200{\mu}m$) shows low coefficient of friction. The material shows mild wear and therefore, wear rate of steel ball (meeting partner) was observed to measure wear rate. Different phases Sialon ceramics were analyzed by XRD patterns. Moreover, the mechanical properties of the Sialon ceramics were observed.

  • PDF

Effect of Volume Fraction of Cr Carbide Phase on the Abrasive Wear Behavior of the High Cr White Iron Harcfacing Weld Deposits (고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 크롬탄화물 양의 영향)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.125-133
    • /
    • 1998
  • The effect of volume fraction of Cr carbide phase (Cr CVF) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iron hardfacing weld deposits has been investigated. In order to examine Cr CVF, a series of alloys with varying Cr CVF by changing chromium and carbon contents and the ratio of Cr/C were employed. The alloys were deposited once or twice on a mild steel plate using the self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test (RWAT). It was shown that hardness and abrasion resistance increased with increasing Cr CVF within the whole test range (Cr CVF : 0.23-0.64). Both primary Cr carbide and eutectic Cr carbide were particularly effective in resisting wear due to their high hardness.

  • PDF