• Title/Summary/Keyword: Mie-scattering theory

Search Result 22, Processing Time 0.03 seconds

Analysis of absorption and scattering characteristics of alumina particles using Mie theory (Mie Theory를 이용한 알루미나 입자의 흡수 및 산란 특성 분석)

  • Ko, Ju-Yong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.962-967
    • /
    • 2011
  • Radiative properties of alumina particles which is the main element of the plume from booster and kick motor used for increasing thrust and insertion into the orbit is analyzed. In order to derive the wavelength integrated (i.e., gray) emissivity, emission term in radiative transfer equation is rearranged to be able to tie up with the parameters induced from fundamental particle scattering Mie theory. Result shows that derived gray emissivity with optical properties increases with temperature rising.

  • PDF

Polarized Light Scattering Spectroscopy for Particle Size Measurement on Surface (편광산란분광법을 이용한 표면의 입자 크기 측정)

  • Cho, Hyoung-Jun;Choi, Chi-Kyu;Kim, Doo-Chol;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.560-564
    • /
    • 2005
  • We used the polarized light scattering spectroscopy(PLSS) to get selectively the particle size information on a surface in optically diffuse material, and we analyzed the experimental results by Mie scattering theory. We found that the PLSS was the proper method fer getting the surface information in optically diffuse material. This method is able to be used in biotechlology area for diagnostics.

A study on the LCD backlight unit using polymer (LCD backlight unit의 고분자 산란형 도광판에 관한 연구)

  • 정일용;박우상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.578-581
    • /
    • 1999
  • Dot pattern print methods composed of a diffusion film and two prism sheets, have been generally used for backlighting systems of LCDs. However, this methods require complex structures and show high power consumption and optical loss. To improve these disadvantages of conventional backlight units, light guides using highly scattering optical transmissions (HSOT) polymer as scatters, have been introduced. In this study we analyzed multiple scattering effect in light guide by means of Monte carlo simulation based on Mie scattering theory and ray tracing method. As a result it was revealed that scattering intensity depends on the size of scatters. On the other hands, it was shown that scattering efficiency depends on the wavelength of fluorescent lamp as well as the size of scatters.

  • PDF

Improving the Performances of Dye-Sensitized Solar Cell by the Optimal $TiO_2$ Photoelectrode Thickness and Light-Scattering Enhancement (최적 $TiO_2$ 전극 두께 및 광산란 증가에 의한 염료감응형 태양광전지의 효율 개선)

  • Niu, Zeng Yuan;Kweon, Hyun Kyu;Park, Chang Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.37-44
    • /
    • 2014
  • In this study, the performance of dye-sensitized solar cells with different thickness of the photelectrode film was simulated by using the electron-diffusion differential model. Through this simulation, the relationships between the thickness of the photoelectrode film and the performances (open-circuit voltage, short-circuit current density, and overall photoelectric-conversion efficiency) of cells were understood and the performances with different thickness of the photoelectrede film were also examined. For considering the refractive index in the liquid electrolyte and exploring the scattering effect of titanium dioxide particles with different sizes using the Mie light-scattering theory, the highest scattering effect of each particles was found out and the optimal size of the titanium dioxide particle was determined for light scattering in the photoelectrode film of dye-sensitized solar cell. Through experiment, the mixed titanium dioxide cell was better than the single titanium dioxide cell and generated a higher overall conversion efficiency because the optimal titanium dioxide particles in the phoelectrode film as light scattering.

Analysis of Parameters Affecting the Attenuation by Rain in Ka and mm-wave Bands (Ka 및 mm파 대역에서 강우감쇠에 영향을 주는 파라미터 분석)

  • 김정효;유명완;김희찬;류규태;이범선;김영수;서덕영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.242-251
    • /
    • 2000
  • Design of wireless link in Ka and mm-wave bands is critically affected by rain attenuation. In this paper, we compared and analyzed the main distributions of rain drop size to estimate the rain attenuation which can be used in domestic environment. Mie scattering theory was checked to agree with Rayleigh theory in its low frequency limit and agree with optical scattering theory in its high frequency limit. We intended to provide more specific criteria to estimate rain attenuation with a generalized approach.

  • PDF

Analysis of Soot Particle Morphology Using Rayleigh Debye Gans Scattering Theory (RDG 산란 이론을 이용한 그을음 탄소 입자의 형상 분석)

  • Seo, Hyoungseock;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.641-646
    • /
    • 2016
  • Soot particles generated by fossil fuel combustion normally have fractal morphology with aggregates consisting of small spherical particles. Thus, Rayleigh or Mie elastic light scattering theory is not feasible for determining the fractal properties of soot aggregates. This paper describes a detailed process for applying Rayleigh-Debye Gans (RDG) scattering theory to effectively extract the morphological properties of any nano-scale particles. The fractal geometry of soot aggregates produced from an isooctane diffusion flame was observed using ex situ transmission electron microscopy (TEM) after thermophoretic sampling. RDG scattering theory was then used to analyze their fractal morphology, and various properties were calculated, such as the diameter of individual soot particles, number density, and volume fraction. The results show indiscernible changes during the soot growth process, but a distinct decreasing trend was observed in the soot oxidation process. The fractal dimension of the soot aggregates was determined to be around 1.82, which is in good agreement with that produced for other types of fuel. Thus, it can be concluded that the value of the fractal dimension is independent of the fuel type.

An Elementary Study on the Combustion Mechanism of Levitated Droplet Clusters by Ultrasonic Wave (초음파를 이용한 부상유적군의 연소기구에 관한 기초연구)

  • Jung, Jin-Do;Kim, Seung-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1191-1199
    • /
    • 2003
  • This paper describes to observe the combustion process of only one droplet cluster. In this study, liquid fuel was atomized by ultrasonic wave to form an acoustically levitated droplet cluster. In order to elucidate the detailed structure of burning process of the droplet cluster, laser tomography method was applied. Time-series planar images of fuel droplets were processed and diameter of the each droplet was calculated based on the Mie-scattering theory. Using these data, the modified droplet group combustion number was estimated in time-series. As the result, when the internal droplet group combustion occur, the modified group combustion number dose not decrease monotonically, but show a tow-staged decreasing process. In all case of combustion process, combustion reactions were measured two types that combustion speed was fast and slow. It was casued by difference of concentration degree and droplet size distribution.

Determination of Sizes of Nano-Particles by Specific Turbidimetry (비혼탁도 법을 이용한 나노 콜로이드 입자의 크기 결정)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2008
  • In this article a reliable and rapid method based on specific turbidimetry is proposed for the determination of sizes of nanoparticles. Conventionally in specific turbidimetry specific turbidities for a colloidal dispersion are measured as a function of light wavelength, and compared to theoretical values calculated from Mie scattering theory for presumed particle sizes. In contrast specific turbidity at a fixed wavelength is measured in the proposed method, and particle sizes are determined from the prepared calibration curve. The calibration curve is a plot of specific turbidity vs particle size and in this case the specific turbidities are measured for a couple of samples of known sizes.

LCD backlighting system with high luminance and good uniformity (LCD backlight unit의 고분자 산란형 도광판에 관한 연구)

  • Jung, Il-Yong;Park, Woo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.173-176
    • /
    • 2000
  • we analyzed multiple ray tracing in the highly scattering optical transmission(HSOT) polymer plate by means of the Monte carlo simulation. Light transmission behavior in the light guide was simulated by a 3-dimensional ray tracing program considering scattering angle given by the Mie theory and mean free path. To improve the uniformity of the conventional HSOT backlight unit, We employed additionally dot patterns. For the proposed structure, we calculated the light transmission behavior and obtained a bright and uniform backlight unit for a large size LCD panel of more than 12 inch.

  • PDF

Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements (항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산)

  • Um, Junshik
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.