• Title/Summary/Keyword: Mie scattering

Search Result 116, Processing Time 0.019 seconds

Development of algorithm for determination of cloud and aerosol in Mie scattering Laser Radar System (Mie 산란 레이저 레이다 시스템을 위한 에어로졸과 구름의 판별 알고리즘 개발)

  • Kim, Sheen-Ja;Lee, Young-Woo;Park, Chan-Bong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.568-570
    • /
    • 2012
  • The algorithm to distinguish cloud from aerosols in the measurements of Laser Radar is developed. This method use the difference of slope between return signals of cloud and aerosols. The parameters achieved from the algorithm are altitude of cloud top, cloud base, and boundary layer.

  • PDF

Application of PIV technique to spray behavior characteristics study in evaporative field (증발 분무 거동특성 연구에 있어서 PIV 기법의 적용)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2011
  • 디젤기관의 경우는 종래부터 직분식이 주류를 이루었고, 근래에는 분사압력의 고압화가 진행중이다. 분사압력의 고압화에 의해 연소효율의 향상 및 배출가스중의 입자상물질(PM:Particulate Matter)의 저감을 유도하고 있으나, 연소가스의 고온화로 인해 질소산화물(NOx:Nitrogen Oxides)은 증가한다. 따라서, 분사기간의 지연(Retard)이나 파일럿분사(Pilot injection)등의 혼합기제어에 의해 질소산화물의 저감을 꾀하고 있다. 이와 같이 디젤기관에 있어서도 혼합기 형성의 최적화에 의한 연소제어를 시도하는 수법이 중시되고 있고, 이를 위해서는 디젤분무 구조에 기초한 혼합기의 형성기구에 대한 규명이 매우 중요하다. 그러므로 본 연구에서는 보다 고도의 혼합기형성 제어를 위한 기초연구로서 고온 고압장에서의 증발디젤자유분무구조를 해석하였으며, 계측영역은 연료와 주위기체와의 혼합이 활발히 진행되는 분무의 하류영역으로 설정하고, 입자화상속도측정법(particle Image Velocimetry:PIV)을 이용한 분무의 유동해석을 기초로 증발 디젤분무의 구조 해석을 행하였다. 실험조건으로서 분사압력을 72MPa, 112MPa로 각각 변화시켰다.

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an Sl Engine : Part II-With Low/Medium Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part II - 저/중 와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • This paper is the second of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected Sl engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray fur the visualization purposes. This results have been compared with steady flow concentration measurement. For low/medium swirl port, the early injection makes such a fuel distribution state that is upper-rich, middle-lean and lower-rich along the combustion chamber and cylinder by tumbling motion. On the other hand, the late injection induces upper-rich, middle-lean and lower-rich state due to the short fuel penetration.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part III-With High Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part III - 고와류의 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.18-26
    • /
    • 2001
  • This paper is the third of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. In high swirl port, the most fuel remains at combustion chamber and upper cylinder region without being affected by injection timing. The macro-distributed state is not changed but the difference of the amount of fuel around the spark plug varies according to injection timing, which determines LML.

  • PDF

In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part I-Without Swirl (가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part I-와류가 없는 경우)

  • 엄인용;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • This paper is the first of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualization for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. For no swirl port, the axial penetration depends on the fuel injection timing. The fuel tends to remain in the upper region of the cylinder far from the spark plug and the distribution is not affected by the injection timing except 90 ATDC.

  • PDF

Spray Distribution Measurement at High Ambient Pressure (고압 환경 하에서의 분무 분포 측정)

  • Cho, Seong-Ho;Im, Ji-Hyuk;Yoon, Young-Bin;Choi, Seong-Man;Han, Young-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • Distribution of spray was measured. Optical Line Patternator (OLP) was used to measure the planar distribution of the spray from a swirl-coaxial type injector. Ambient pressure was varied and injection pressure was fixed in experiment. As ambient pressure increased, spray distribution was changed from hallow cone to solid cone shape, and spray angle was decreased. Limitation in measuring dense spray was found at high ambient pressure condition.

Analysis of Xe Plasma by LAS (레이저 흡수법을 이용한 제논 플라즈마 분석)

  • Yang, Jong-Kyung;Her, In-Sung;Lee, Jong-Chan;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.220-222
    • /
    • 2005
  • We can classify two cases in a way to observe an atom of gas state or a molecule using the laser. First case is way to use dispersion phenomenon like Rayleigh scattering, Thomson scattering, Mie scattering, Raman Scattering. And Second case is a way to use change phenomenon like a LAS (Laser Absorption Spectroscopy), LIF (Laser Induced Fluorescent). In this paper, we have measured the meta-stable density and the distribution by using a LAS method in Xe discharge lamp. The laser absorption spectroscopy (LAS) is useful to investigate the behavior of such species. The xenon atoms in the $1S_4$ and $1S_5$ generate excited $Xe^*$(147nm) and $Xe_{2}^*$(173nm) dimers in Xe plasma. It is found that the intensity of VUV 147nm emission is proportional to that of the IR 828nm emission, and the VUV 173nm emission is roughly proportional to that of the IR 823nm emission. The laser is used CW laser that consist of AlGaAs semiconductor and energy level is used 823.16nm wavelength. We measured signal of monochrometer from the lamp center while will change a discharge electric current by 6mA in 3mA and calculated meta-stable state density of a xenon atom through a measured value.

  • PDF

An experimental study on the structure of the jet flame in cross flow (균일 유동장에 수직으로 분사된 제트화염의 구조에 대한 실험적 연구)

  • 유영돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.84-89
    • /
    • 1994
  • 주유동에 수직으로 분사된 제트 화염의 구조는 이해하기 위하여 화염 길이와 온도를 측정하고 reactive mie scattering 방법을 이용하여 단면 가시화를 실시하였다. 주유동 속도와 제트 분사 속도의 증가에 따라 화염 길이도 함께 증가함을 알 수 있고, 단면 가시화 결과 화염 내부에 존재하는 inner vortical structure는 일반적인 동축제트 화염과 같은 대칭 구조를 갖지 앉고 유동 조건에 따라 inner vortical motion 의 생성 위치가 변화함을 알 수 있다 이는 본 유동장의 특성 중의 하나인 bound vortex와 제트와 주유동이 접하는 상류 면에서 발생하는 rolling-up 의 강도에 좌우됨을 알 수 있다.

  • PDF

Spray Measurement Using Optical Line Patternator at High Ambient Pressure (광학 선형 패터네이터를 이용한 고압 환경 하에서의 분무 측정)

  • Koh Hyeonseok;Shin Sanghee;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2005
  • Optical Line Patternator(OLP) has been applied to get a distribution of the spray at high ambient pressure. OLP is a combined technique of extinction measurement and image processing. The attenuated intensity of laser beam after traversing spray region was measured by using a photo-detector, and the line image of Mie-scattering was captured simultaneously in the path of each laser beam by using a CCD camera. The distribution of extinction coefficient in the spray is obtained by processing these data with the algebraic reconstruction technique. From the distribution of extinction coefficient, the surface distribution of spray can be reconstructed. OLP does not use laser sheet but use laser beam so that the noise effect of multiple scattering, caused by increasing number density of droplet in high pressure environment, is reduced drastically. OLP is expected as a suitable method which can investigate the characteristics of relatively large spray under the high pressure environment such as liquid rocket engine.

  • PDF