• Title/Summary/Keyword: Mid-infrared lens

Search Result 9, Processing Time 0.032 seconds

Modulation Transfer Function System for a Mid-infrared Lens by Knife-edge Scanning Technique (칼날 주사방식을 이용한 중적외선 렌즈의 변조전달함수 측정 장치)

  • Song, Se-Yong;Jo, Jae-Heung;Hong, Sung-Mok;Lee, Hoi-Youn;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • We fabricate a measuring system to measure the modulation transfer function (MTF) of a mid-infrared imaging silicon lens by using the knife-edge scanning technique. In particular, we measure on-axial tangential MTF of the silicon lens with the focal length of 50 mm and F-number F/4 in the wavelength band of mid-infrared between $3\;{\mu}m$ and $5\;{\mu}m$. In order to obtain the infinite object, the off-axial parabolic reflector with the focal length of 2.545 m is utilized. In the comparison with measured MTF data and designed MTF values curve, we find that the tolerance of measured MTF data below the spatial frequency of 7 lp/mm is within 2%.

A Design of Mid-wave Infrared Integral Catadioptric Optical System with Wide FOV

  • Yu, Lin Yao;Jia, Hong Guang;Wei, Qun;Jiang, Hu Hai;Zhang, Tian Yi;Wang, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2013
  • In order to deduce the difficulty of fixing the Ritchey-Chretien (R-C) dual reflective optical system and enhance the stability of the secondary mirror, a compact integral structure is presented here composed of two transmitting and two reflective aspheric surfaces. The four surfaces were manufactured from a single germanium lens and integrated together. The two reflective surfaces formed by coating the inner reflecting films were assembled in one lens. It makes the installation of the two mirrors easier and the structure of the secondary mirror more stable. A design of mid-wave infrared (MWIR) compact imaging system is presented with a spectral range chosen as $3.7-4.8{\mu}m$. The effective focal length is f=90 mm. The field of view (FOV) for the lens is $4.88^{\circ}$. It has good imaging capability with Modulation Transfer Function (MTF) of all field of view more than 0.55 close to the diffraction limitation. Outdoor experiments were carried out and it is shown that the integral catadioptric optical system performs well on imaging.

Optical properties of ZnS ceramics by hot press stack sintering process (고온 가압 적층 소결에 의한 황화아연 세라믹스의 광학성 특성)

  • Park, Buem-Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.148-153
    • /
    • 2021
  • During the manufacture of a ZnS lens with excellent transmittance in the mid-infrared region (3-5 ㎛) by the hot-press process, a single-layer sintering method is used in which one lens is manufactured in one process. Additional research is required to improve this single-layer sintering method because of its low manufacturing efficiency. To solve this problem, the variation in optical properties of ZnS lenses with change in sintering temperature was investigated by introducing a Stack sintering method that can sinter multiple lenses simultaneously. A carbon paper was placed between the molded lenses and sintered into five layers. The average permeability of 67% at medium infrared wavelengths of 3-5 ㎛ was excellent under the following sintering conditions: pressure of 50 MPa and temperature of 850℃. This value is 1% less than the average permeability in the case of single-layer sintering of the ZnS lens. It was confirmed that the stack sintering method developed in this study can be used to manufacture a large number of lenses with excellent characteristics in a single process.

Optical Properties of Mid-infrared Transparent ZnS Ceramics with Different Molar Ratio of S/Zn (S/Zn의 몰비에 따른 중적외선 투과용 ZnS 세라믹스의 소결과 광학적 특성)

  • Yeo, Seo-Yeong;Park, Buem-Keun;Kim, Chang-Il;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.256-261
    • /
    • 2019
  • In this study, mid-infrared transparent zinc sulfide (ZnS) ceramics were fabricated through hydrothermal synthesis with different molar ratios of S/Zn (S/Zn = 0.8, 1.0, 1.2, 1.4, and 1.6). The ZnS ceramics were sintered at a relatively low temperature of $850^{\circ}C$ to prevent the occurrence of the hexagonal phase featuring optical anisotropy. The phase composition, microstructure, and optical properties of the ZnS ceramics were subsequently investigated by employing X-ray diffraction, scanning electron microscopy, and Fouriertransform infrared spectroscopy. The results obtained indicate that the ZnS nanoparticles feature the cubic phase, without the hexagonal phase. Moreover, with increasing S, the crystallinity and particle size of the ZnS nanoparticles increased. The crystallinity and density of the ZnS ceramics improved when the molar ratio of S was higher than the molar ratio of Zn, thereby enhancing the transmittance. Furthermore, the ZnS ceramic with an S/Zn value of 1.2 was found to exhibit the highest transmittance of approximately 69% owing to the reduced occurrence of the hexagonal phase and a high density of 99.8%.

Design of Two Zoom Infrared Camels using Noise Uniformity Correction by Shutter Lens (셔터렌즈에 의한 검출기 불균일 보정을 적용한 이중배율 적외선 카메라 설계)

  • Ahn, Gyou-Bong;Kim, Seo-Hyun;Jung, Jae-Chul;Jo, Mun-Shin;Kim, Chang-Woo;Kim, Hyun-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • This paper describes the design technology for a third generation thermal imaging system, which is more compact than before, using a $320\times240$ mid-IR focal plane detector. The third generation non-scanning thermal imaging system was constructed as a compact thermal imaging module as a reconnaissance, surveillance and navigation sensor for helicopter and infantry vehicles in the $1980's\sim1990's$ and now, we designed a new compact infrared camera and studied a new type of non-uniformity correction lens fer this camera.

Development of Calibration Target for Infrared Thermal Imaging Camera (적외선 열화상 카메라용 캘리브레이션 타겟 개발)

  • Kim, Su Un;Choi, Man Yong;Park, Jeong Hak;Shin, Kwang Yong;Lee, Eui Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.248-253
    • /
    • 2014
  • Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics (이중 시야 중적외선 광학계 비열화·나르시서스 분석)

  • Jeong, Do Hwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.

Design and Development of a Single-photon Laser and Infrared Common Aperture Optical System

  • Wu, Hongbo;Zhang, Xin;Tan, Shuanglong;Liu, Mingxin;Wang, Lingjie;Yan, Lei;Liu, Yang;Shi, Guangwei
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • A single-photon laser and mid-wave infrared (MWIR) common aperture optical system was designed and developed to detect and range a long-distance civil aviation aircraft. The secondary mirror of the Ritchey-Chretien (R-C) optical system was chosen as a dichroic lens to realize the design of a common aperture system for the laser and MWIR. Point spread function (PSF) ellipticity was introduced to evaluate the coupling efficiency of the laser receiving system. A small aperture stop and narrow filter were set in the secondary image plane and an afocal light path of the laser system, respectively, and the stray light suppression ability of the small aperture stop was verified by modeling and simulation. With high-precision manufacturing technology by single point diamond turning (SPDT) and a high-efficiency dichroic coating, the laser/MWIR common aperture optical system with a 𝜑300 mm aluminum alloy mirror obtained images of buildings at a distance of 5 km with great quality. A civil aviation aircraft detection experiment was conducted. The results show that the common aperture system could detect and track long-distance civil aviation aircraft effectively, and the coverage was more than 450 km (signal-to-noise ratio = 6.3). It satisfied the application requirements for earlier warning and ranging of long-range targets in the area of aviation, aerospace and ground detection systems.

Development of a MTF Measurement System for an Infrared Optical System (적외선 광학계용 MTF 측정장치 개발)

  • Son, Byoung-Ho;Lee, Hoi-Yoon;Song, Jae-Bong;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • In this paper, we developed a MTF (Modulation Transfer Function) measurement system using a knife-edge scanning method for infrared optics. It consists of an objective part to generate the target image, a collimator to make the beam parallel, and a detector to analyze the image. We used a tungsten filament as the light source and MCT (Mercury Cadmium Telluride) to detect the mid-infrared(wavelength $3-5{\mu}m$) image. We measured the MTF of a standard lens (f=5, material ZnSe) to test this instrument and compared the result to the theoretical value calculated using the ZEMAX commercial software. It was found that the difference was within ${\pm}0.035$ at the cut-off frequency (50 1/mm). Also, we calculated the A-type measurement uncertainty to check the reliability of the measurement. The result showed only 0.002 at 20 1/mm in spatial frequency, which means very little variation in the MTF measurement under the same conditions.