• Title/Summary/Keyword: Microwave surface resistance

Search Result 55, Processing Time 0.021 seconds

The Characteristics of c-BN Thin Films on High Speed Steel by Electron Assisted Hot Filament C.V.D Systems (EACVD법에 의한 고속도강에의 c-BN박막형성 및 특성에 관하여)

  • Lee, Gun-Young;Choe, Jean-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.87-92
    • /
    • 2006
  • The characteristic of interface layer and the effect of bias voltage on the microstructure of c-BN films were studied in the microwave plasma hot filament C.V.D process. c-BN films were deposited on a high speed steel(SKH-51) substrate by hot filament CVD technique assisted with a microwave plasma to develop a high performance of resistance coating tool. c-BN films were obtained at a gas pressure of 20 Torr, vias voltage of 300 V and substrate temperature of $800^{\circ}C$ in $B_2H_6-NH_3-H_2$ gas system. It was found that a thin layer of hexagonal boron nitride(h-BN) phase exists at the interface between c-BN layer and substrate.

Simultaneous Measurements of the Loss Tangent of Rutile ($TiO_2$) and the Microwave Surface Resistance of $YBa_2Cu_3O_{7-{\delta}}$ Films using Two Resonant Modes of Rutile -loaded cavity Resonator (루타일이 삽입된 유전체 공진기의 두 공진 모드를 이용한 루타일의 유전손실과 $YBa_2Cu_3O_{7-{\delta}}$ 박막의 마이크로파 표면저항 측정)

  • Lim, J.;Lee, J.H.;Kim, M.J.;Hur, J.;Lee, S.Y.
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • In measuring the microwave surface resistance of high-Tc superconductor (HTS) films using the dielectric-loaded cavity resonator method, one of the most important factors that limit the measurement sensitivity is the measurement error in the loss tangent ($tan\delta$) of the dielectric rod placed inside the cavity. We have measured the effective surface resistance ( $R_{S}$ $^{eff}$) of$ YBa_2$$_Cu3$$_{7-{\delta}}$ (YBCO) films and the $tan\delta$ of rutile ($TiO_2$) using the 'two-tone'method suggested by Kobayashi et at. [IEEE, MTT-S Digest, 495, (2001)], which enables simultaneous measurements of both the $R_{S}$ $^{eff}$ fof HTS films and the $tan\delta$ of the rutile with high sensitivity. A rutile-loaded cavity resonator with the $TE_{012}$ and $TE_{021}$ resonant frequencies at 13.67 - 14.01 GHz is used for this purpose. At temperatures where the two modes do not couple with other modes, the $R_{S}$ $^{eff}$ of YBCO films and $tan\delta$ of rutile measured by the two-tone method appear to match well with the corresponding values measured using the reported $tan\delta$ values of sapphire within 10 %. Usefulness of the 'two-tone' method for microwave characterization of HTS films and dielectrics is discussed.d.ielectrics is discussed.ussed.

  • PDF

Design and Fabrication of Thin Microwave Absorbers of ITO/Dielectric Structures Used for Mobile Telecommunication Frequency Bands (ITO박막/세라믹유전체 구조의 이동통신 주파수대역용 박형 전파흡수체의 설계 및 제조)

  • Yoon, Yeo-Choon;Kim, Sung-Soo
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.259-265
    • /
    • 2003
  • For the aim of thin microwave absorbers used in mobile telecommunication frequency band, this study proposed a high permittivity dielectrics(λ/4 spacer) coated with ITO thin films of 377 $\Omega$/sq(impedance transformer). High frequency dielectric properties of ferroelectric ceramics, electrical properties of ITO thin films and microwave absorbing properties of ITO/dielectrics were investigated. Ferroelectric materials including $BaTiO_3$(BT), 0.9Pb($Mg_{1}$3/Nb$_{2}$3/)$O_3$-0.1 $PbTiO_3$(PMN-PT), 0.8 Pb (Mg$_{1}$3/$Nb_{2}$3/)$O_3$-0.2 Pb($Zn_{1}$3$_Nb{2}$3/)$O_3$(PMN-PZN) were prepared by ceramic processing for high permittivity dielectrics,. The ferroelectric materials show high dielectric constant and dielectric loss in the microwave frequency range. The microwave absorbance (at 2 ㎓) of BT, 0.9PMN-0.1PT, and 0.8PMN-0.2PZN were found to be 60%(at a thickness of 3.5 mm), 20% (2.5 mm), and 30% (2.5 mm), respectively. By coating the ITO thin films on the ferroelectric substrates with λ/4 thickness, the microwave absorbance is greatly improved. Particularly, when the surface resistance of ITO films is closed of 377 $\Omega$/sq, the reflection loss is reduced to -20 ㏈(99% absorbance). This is attributed to the wave impedance matching controlled by ITO thin films at a given thickness of high permittivity dielectrics of λ/4 (3.5 mm for BT, 2.5 mm for PMN-PT and PMN-PZN at 2 ㎓). It is, therefore, successfully proposed that the ITO/ferroelectric materials with controlled surface resistance and high dielectric constant can be useful as a thin microwave absorbers in mobile telecommunication frequency band.

Electrochemical Characteristics of the Activated Carbon Electrode Modified with the Microwave Radiation in the Electric Double Layer Capacitor (전기이중층캐패시터에서 마이크로파에 의해 개질된 활성탄소전극의 전기화학적 특성)

  • Sun, Jin-Kyu;Um, Eui-Heum;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Modifying surface of activated carbon for the electrode of EDLC with an organic electrolyte was investigated to improve the electrochemical performance of EDLC by the microwave radiation. Three kinds of activated carbons, prepared activated carbon from petroleum cokes and pitch cokes and commercial activated carbon BP-25, were used for this study. For all investigated activated carbons, hydrophilic functional groups-containing oxygen disappeared from the surface of activated carbon as microwave radiation. And as microwave radiation time was increased, the specific surface area and total pore volume of activated carbons were reduced and average pore diameter were increased. From theses effects, interfacial resistance of EDLC with the modified activated carbon electrode was drastically decreased, and discharge capacitance was increased although the specific surface area of activated carbon was reduced by this microwave radiation.

Enhanced Electrical Conductivity of Gold Doped Graphene Films by Microwave Treatment

  • Kim, Yoo-Seok;Song, Woo-Seok;Cha, Myoung-Jun;Lee, Su-Il;Cho, Ju-Mi;Kim, Sung-Hwan;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.188-188
    • /
    • 2012
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. In this study, we report a creative strategy, irradiation of microwave at room temperature under vacuum, for obtaining size-homogeneous gold nano-particle doping on graphene. The gold nano-particlization promoted by microwave irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping. These results clearly revealed that gold nanoparticle with ${\geq}30$ nm in mean size were decorated along the surface of the graphene after microwave irradiation. The fabrication high-performance transparent conducting film with optimized doping condition showed a sheet resistance of ${\geq}100{\Omega}$/sq. at ~90% transmittance. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF