• Title/Summary/Keyword: Microwave plasma

Search Result 401, Processing Time 0.031 seconds

Microwave Electric Field and Magnetic Field Simulations of an ECR Plasma Source for Hyperthermal Neutral Beam Generation

  • Lee, Hui-Jae;Kim, Seong-Bong;Yu, Seok-Jae;Jo, Mu-Hyeon;NamGung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.501-501
    • /
    • 2012
  • A 2.45 GHz electron cyclotron resonance (ECR) plasma source with a belt magnet assembly configuration (BMC) was developed for hyperthermal neutral beam (HNB) generation. A plasma source for high flux HNB generation should be satisfied with the requirements: low pressure operation, high density, and thin plasma. The ECR plasma source with BMC achieved high density at low operation pressure due to electron confinement enhancement caused by high mirror ratio and drifts in toroidal direction. The 2.45 GHz microwave launcher had a circularly bended WR340 waveguide with slits. The microwave E-field profile induced by the microwave launcher was studied in this paper. The E-field profile was a cups field perpendicular to B-filed at ECR zone. The optimized E-field profile and B-field were found for effective ECR heating.

  • PDF

A Study of Microwave Output Experiment of Slow Wave Waveguide (지파 도파관을 이용한 마이크로파 출력 실험 연구)

  • Kim, Won-Sop
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.465-468
    • /
    • 2009
  • The dispersion relation and the characteristic of propagation are measured. The measurements of the dispersion relation are observed by a plunger method employed in slow plasma density by pumping microwaves on the axis are observed in plasma loaded slow wave structure. In case of small incident microwave powers the well known plasma density cavity are observed. At the axial positions of minimal radius in the waveguides, the maxima og the electron density, the plasma potential and the RF electric field are observed in cases of high-power microwaves.

Hydrophobic and Mechanical Characteristics of Hydrogenated Amorphous Carbon Films Synthesized by Linear Ar/CH4 Microwave Plasma

  • Han, Moon-Ki;Kim, Taehwan;Cha, Ju-Hong;Kim, Dong-Hyun;Lee, Hae June;Lee, Ho-Jun
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.34-41
    • /
    • 2017
  • A 2.45 GHz microwave plasma with linear antenna has been prepared for hydrophobic and wear-resistible surface coating of carbon steel. Wear-resistible properties are required for the surface protection of cutting tools and achieved by depositing a hydrogenated amorphous carbon film on steel surface through linear microwave plasma source that has $TE_{10}-TEM$ waveguide. Compared to the existing RF plasma source driven by 13.56 MHz, linear microwave plasma source can easily generate high density plasma and provide faster deposition rate and wider process windows. In this study, $Ar/CH_4$ gas mixtures are used for hydrogenated amorphous carbon film deposition. When microwave power of 1000 W is applied, 40 cm long uniform $Ar/CH_4$ plasma could be obtained in gas pressure of 200~400 mTorr. The Vickers hardness measurement of hydrogenated amorphous carbon film on steel surface was evaluated. It was found the optimized deposition condition at $Ar:CH_4=25:25$ sccm, 300 mTorr with microwave power of 1000W and RF bias power of 100W. By deposition of hydrogenated amorphous carbon film, contact angle on steel surfaces increases from $43.9^{\circ}$ to $93.2^{\circ}$.

Gas phase diagnostics of high-density $SiH_4/H_2$ microwave plasma

  • Toyoda, Hirotaka;Kuroda, Toshiyuki;Ikeda, Masahira;Sakai, Junji;Ito, Yuki;Ishijima, Tatsuo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.94-94
    • /
    • 2010
  • As a new plasma source for the plasma enhanced chemical vapor deposition (PCVD) of ${\mu}c$-Si deposition, we have demonstrated a microwave-excited plasma source, which can produce high density (${\sim}10^{12}\;cm^{-3}$) plasma with low electron temperature (~1 eV) and low plasma potential (~10 V). In this plasma source, microwave power radiated from slot antenna is distributed along the plasma-dielectric interface in large area and this enables us to produce uniform high-density plasma in large area. To optimize deposition conditions, deep understanding of gas phase chemistry is indispensable. In this presentation, we will discuss on the gas phase diagnostics of microwave $SiH_4/H_2$ plasma such as $SiH_4$ dissociation or $SiH_3$ radical profile as well as deposited film properties.

  • PDF

Effects of the Sheath on Determination of the Plasma Density of Microwave Probe

  • Kim, Dae-Woong;You, Shin-Jae;Na, Byung-Keun;You, Kwang-Ho;Kim, Jung-Hyung;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.181-181
    • /
    • 2012
  • The microwave probe for measuring plasma density is widely used for its advantages: First, it is not affected by the reactive gas. Second, it can measure local plasma parameters such as plasma density, plasma potential and plasma temperature. Third, it is simple and robust. A cut-off probe is the one of the most promising microwave probe. Recently, Kim et al. reveals the physics of the cut-off probe but the effect of the sheath on the determination of the plasma density is not explained. In this presentation, for taking account of sheath effects on determination of plasma density from the cut-off peak, a simplified circuit modeling and an E/M simulation are conducted. The results show that occupation ratio of sheath volume between two tips of the cut-off probe and subsequence pressure condition mainly change position of the cut-off peak with respect to plasma frequency. Magnitude of relative voltage taken on the impedance of sheath and the impedance of bulk plasma can explain this effect. Furthermore, effects of gap size, tip radius, and tip length ware revealed based on above analysis.

  • PDF

Parametric study of diamond/Ti thin film deposition in microwave plasma CVD (공정변수에 따른 microwave plasma CVD 다이아몬드/Ti 박막 증착 양상 조사)

  • Cho Hyun;Kim Jin Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2005
  • Effects of CH₄/H₂ flow rate ratio, chuck bias and microwave power on the structural properties and particle densities of diamond thin films deposited on Ti substrates in microwave plasma CVD were examined. High quality diamond thin films were deposited on Ti substrates in 2∼3 CH₄ Vol.% conditions due to the preferential formation of sp³-bonus ana selective removal of sp²-bonus in the CH₄/H₂ mixtures, and the mechanism for the formation of diamond particles on Ti was analysed. Diamond particle density increased with increasing negative chuck bias to Ti substrate due to bias-enhanced nucleation of diamond and the threshold voltage was found at ∼-50 V. With increasing microwave power the evolution from micro-crystalline graphite layer to diamond layer was observed.

Electron field emission from various CVD diamond films

  • Usikubo, Koji;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.385-388
    • /
    • 1999
  • Electron field emission properties from various CVD diamond films were studied. Diamond films were synthesized by microwave plasma CVD at 1173K and at 673K substrates temperature and pulse microwave plasma CVD at 1173K. B-doped diamond film was synthesized by microwave plasma CVD at 1173K also. Estimation by SEM, both the non-doped diamond film and B-doped diamond film which were synthesized at 1173K substrate temperature were $2~3\mu\textrm{m}$ in diameter and nucleation densities were $10^{8}{\;}numbers/\textrm{cm}^2$ order. The diamond film synthesized at 673K was $0.2\mu\textrm{m}$ in diameter and nucleation densities was 109 numbers/cm2 order. The diamond film synthesized by pulse microwave plasma CVD at 1173K was $0.2\mu\textrm{m}$ in diameter and nucleation density was $10^{9}{\;}numbers/\textrm{cm}^2$ order either. From the result of electron field emission measurement, electron field emission at $20V/\mu\textrm{m}$ from CVD diamond film synthesized by pulse microwave plasma CVD was $37.3\mu\textrm{A}/\textrm{cm}^2$ and the diamond film showed the best field emission property comparison with other CVD diamond.

  • PDF

Comparative simulation of microwave probes for plasma density measurement and its application

  • Kim, Dae-Ung;Yu, Sin-Jae;Kim, Si-Jun;Lee, Jang-Jae;Kim, Gwang-Gi;Lee, Yeong-Seok;Yeom, Hui-Jung;Lee, Ba-Da;Kim, Jeong-Hyeong;O, Wang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.185.2-185.2
    • /
    • 2016
  • The plasma density is an essential plasma parameter describing plasma physics. Furthermore, it affects the throughput and uniformity of plasma processing (etching, deposition, ashing, etc). Therefore, a novel technique for plasma density measurement has been attracting considerable attention. Microwave probe is a promising diagnostic technique. Various type of cutoff, hairpin, impedance, transmission, and absorption probes have been developed and investigated. Recently, based on the basic type of probes, modified flat probe (curling and multipole probes), have been developing for in situ processing plasma monitoring. There is a need for comparative study between the probes. It can give some hints on choosing the reliable probe and application of the probes. In this presentation, we make attempt of numerical study of different kinds of microwave probes. Characteristics of frequency spectrum from probes were analyzed by using three-dimensional electromagnetic simulation. The plasma density, obtained from the spectrum, was compared with simulation input plasma density. The different microwave probe behavior with changes of plasma density, sheath and pressure were found. To confirm the result experimentally, we performed the comparative experiment between cutoff and hairpin probes. The sheath and collision effects are corrected for each probe. The results were reasonably interpreted based on the above simulation.

  • PDF

Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

  • Cho, Sang-Jin;Shrestha, Shankar Prasad;Lee, Soon-Bo;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.905-907
    • /
    • 2014
  • The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing $O_2$ flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing $O_2$ flow rate. Resistance changes only slightly with different $O_2$ flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. $O_2$ or $N_2$ plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

Different formation of carbon nanofilaments as a function of the gap between the substrate and the microwave plasma

  • Kim Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.20-24
    • /
    • 2006
  • Iridium-catalyzed carbon nanofilaments were formed on MgO substrate as a function of the gap between the substrate and the plasma using microwave plasma-enhanced chemical vapor deposition method. Under the remote plasma condition, carbon nanofibers were formed on the substrate. Under the adjacent plasma condition, on the other hand, carbon nanotubes-like materials instead of carbon nanofibers could be formed. When the substrate immersed into the plasma, any carbon nanofilaments formation couldn't be observed. During the reaction, the substrate temperatures were measured as a function of the gap. Based on these results, the cause for the different carbon nanofilaments formation according to the gap was discussed.