• 제목/요약/키워드: Microwave materials

검색결과 735건 처리시간 0.027초

Microwave heating of carbon-based solid materials

  • Kim, Teawon;Lee, Jaegeun;Lee, Kun-Hong
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.15-24
    • /
    • 2014
  • As a part of the electromagnetic spectrum, microwaves heat materials fast and efficiently via direct energy transfer, while conventional heating methods rely on conduction and convection. To date, the use of microwave heating in the research of carbon-based materials has been mainly limited to liquid solutions. However, more rapid and efficient heating is possible in electron-rich solid materials, because the target materials absorb the energy of microwaves effectively and exclusively. Carbon-based solid materials are suitable for microwave-heating due to the delocalized pi electrons from sp2-hybridized carbon networks. In this perspective review, research on the microwave heating of carbon-based solid materials is extensively investigated. This review includes basic theories of microwave heating, and applications in carbon nanotubes, graphite and other carbon-based materials. Finally, priority issues are discussed for the advanced use of microwave heating, which have been poorly understood so far: heating mechanism, temperature control, and penetration depth.

Microwave assisted processing of silver thick films for microelectronic applications

  • Rane, Sunit;Bhatkar, Rushna;Mulik, Uttam;Amalnerkar, Dinesh
    • Advances in materials Research
    • /
    • 제2권3호
    • /
    • pp.133-140
    • /
    • 2013
  • This paper aims to focus on the microwave processing of thick films which is a fast, cheap technique and could be the alternative to the currently used conventional high temperature processing technique. Microwave processing has gained worldwide acceptance as a novel method for heating and sintering a variety of materials, as it offers specific advantages in terms of speed, energy efficiency, process simplicity, finer microstructures and lower environmental hazards. Silver conducting thick films were prepared and processed in the household microwave oven. The films sintered at different time period by keeping the other parameter such as microwave power, film thickness etc constant. The microstructure analysis revealed that the surface morphology of the microwave processed films become compact with respect to the processing time. The sheet resistance for microwave sintered silver films is in the range of 0.003 to $1.207{\Omega}/{\Box}$ where as the films fired at 750 and $850^{\circ}C$ showed the resistance of 0.009 and $0.003{\Omega}/{\Box}$ which can be comparable. The results revealed that the microstructure of the microwave sintered films has more uniform and compact surface than that of the conventionally fired films. The paper reports upon the preparation of silver thick film by screen printing technique and processing the same by microwave which also compared with the conventionally processed thick films.

Microwave Application in the Heating of Low-Loss Ceranmic Materials

  • Park, Seong-S.;Lee, Yoon-B.;Ryu, Su-C.;Jang, Youn-S.;Park, Hong-C.
    • 한국재료학회지
    • /
    • 제6권6호
    • /
    • pp.576-584
    • /
    • 1996
  • The zirconia-alumina composite, a low loss material, was sucessfully sintered using a 2.45 GHz microwave radiation. The dense zirconia was used as a microware coupling aid. The effect of microwave power level on the heating rates of samples and the feasibility of microwave energy use in processign ceramec materials were obtained. It was also obtained how to accurately measure the temperature. According to the microwave heating theory, heating mechanisms were discussed.

  • PDF

Microwave Effect on Curing of Waterborne Polyurethane

  • Lee, Hoi-Kwan;Fang, Chris. Y.;Pantano, Carlo. G.;Kang, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.961-963
    • /
    • 2011
  • Spin-coated waterborne polyurethane to protect glass surface from environmental attacks was cured by using microwave heating. The effect of microwave heating on the reaction kinetics, chemical durability, and transmittance of polyurethane was investigated. In comparison to the conventional heating the results show that the microwave heating substantially accelerates the curing process of waterborne polyurethane and the total time for the completion of the reaction is only 1/7 of that in the conventional process. The microwave cured sample showed an excellent caustic resistance compared to conventional cured one. It means that microwave heating produces dense structure during curing process. The dense structure does not affect to the transmittance in the visible region.

IMPROVEMENT OF MICROWAVE ABSORPTION CHARACTERISTICS BY COATING LAYER IN SUBSTITUTED U-TYPE FERRITES

  • KWANG-PIL JEONG;JEONG-GON KIM;SU-WON YANG;JIN-HYUK CHOI;SEUNG-YOUNG PARK
    • Archives of Metallurgy and Materials
    • /
    • 제65권4호
    • /
    • pp.1287-1291
    • /
    • 2020
  • The U-type ferrite is a kind of hexagonal ferrite, and it is known as a microwave absorber in the X-band. The magnetic and dielectric loss of the U-type ferrite change to the composition and coating layer, etc. In this study, the silicon oxide layer was coated on the substituted U-type ferrites to improve microwave absorption characteristics. The complex permittivity and complex permeability were measured using toroidal specimens that were press-molded and the measured frequency range was set from 2-18 GHz. The improvement of the microwave absorption rate was different according to the type of the substituted U-type ferrites. Only in the substituted U-type ferrites with nickel and zinc, an improvement in the microwave absorption rate due to enhancement of magnetic loss was confirmed. The highest microwave absorption was 99.9% at 9.6 GHz, which was S_Z0.5U.

강유전체를 이용한 이동통신주파수 대역용 박형 전파흡수체의 제조 및 특성 (Fabrication and Properties of Thin Microwave Absorbers of Ferroelectric Materials Used in Mobile Telecommunication Frequency Bands)

  • 이영종;윤여춘;김성수
    • 한국재료학회지
    • /
    • 제12권2호
    • /
    • pp.160-165
    • /
    • 2002
  • High-frequency dielectric and microwave absorbing properties have been investigated in ferroelectric materials (BaTiO$_3$(BT), (1-x)Pb$Mg_{\frac{1}{3}}Nb_{\frac{2}{3}}$)O$_3$-xPbTiO$_3$(PMN-PT), (1-x)Pb$Mg_{\frac{1}{3}}Nb_{\frac{2}{3}}$O$_3$-xPb(Zn_{\frac{1}{3}}Nb_{\frac{2}{3}}$)O$_3$(PMN-PZN) for the aim of thin microwave absorbers in the frequency range of mobile telecommunication. The specimenns are prepared by conventional ceramic processing and complex permittivity has been measured by transmission/reflection method. The ferroelectric materials show high dielectric constant and dielectric loss in the microwave range and their domiant loss mechanism is considered to be domain wall relaxation. The microwave absorbance of BT 0.9PMN-0.1PT, and 0.8PMN-0.2PZN specimen (determined at 2) are found to be 99.5% (at a thickness of 4.5 mm), 50% (2.5 mm), and 30% (2.5 mm), respectively. It is suggested that PMN-PT or PMN-PZN ferroelectrics are good candidate materials for the spacer of λ/4 absorber. The use of ferroelectric materials is effective in reducing the thickness of absorber with their advantage of high dielectric constant.

Microwave-Enhanced Low-Temperature Crystallization of Amorphous Silicon Films for TFTs

  • Ahn, Jin-Hyung;Eom, Ji-Hye;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.177-180
    • /
    • 2002
  • Microwave has been utilized for low-temperature crystallization of amorphous Si films. Microwave annealing lowered the crystallization temperature and shortened the annealing time. The combination of Ni and microwave applications on a-Si films further enhanced the crystallization. The enhancement was due to both reduced nucleation activation energy and growth activation energy.

  • PDF

ITO박막/세라믹유전체 구조의 이동통신 주파수대역용 박형 전파흡수체의 설계 및 제조 (Design and Fabrication of Thin Microwave Absorbers of ITO/Dielectric Structures Used for Mobile Telecommunication Frequency Bands)

  • 윤여춘;김성수
    • 한국재료학회지
    • /
    • 제13권4호
    • /
    • pp.259-265
    • /
    • 2003
  • For the aim of thin microwave absorbers used in mobile telecommunication frequency band, this study proposed a high permittivity dielectrics(λ/4 spacer) coated with ITO thin films of 377 $\Omega$/sq(impedance transformer). High frequency dielectric properties of ferroelectric ceramics, electrical properties of ITO thin films and microwave absorbing properties of ITO/dielectrics were investigated. Ferroelectric materials including $BaTiO_3$(BT), 0.9Pb($Mg_{1}$3/Nb$_{2}$3/)$O_3$-0.1 $PbTiO_3$(PMN-PT), 0.8 Pb (Mg$_{1}$3/$Nb_{2}$3/)$O_3$-0.2 Pb($Zn_{1}$3$_Nb{2}$3/)$O_3$(PMN-PZN) were prepared by ceramic processing for high permittivity dielectrics,. The ferroelectric materials show high dielectric constant and dielectric loss in the microwave frequency range. The microwave absorbance (at 2 ㎓) of BT, 0.9PMN-0.1PT, and 0.8PMN-0.2PZN were found to be 60%(at a thickness of 3.5 mm), 20% (2.5 mm), and 30% (2.5 mm), respectively. By coating the ITO thin films on the ferroelectric substrates with λ/4 thickness, the microwave absorbance is greatly improved. Particularly, when the surface resistance of ITO films is closed of 377 $\Omega$/sq, the reflection loss is reduced to -20 ㏈(99% absorbance). This is attributed to the wave impedance matching controlled by ITO thin films at a given thickness of high permittivity dielectrics of λ/4 (3.5 mm for BT, 2.5 mm for PMN-PT and PMN-PZN at 2 ㎓). It is, therefore, successfully proposed that the ITO/ferroelectric materials with controlled surface resistance and high dielectric constant can be useful as a thin microwave absorbers in mobile telecommunication frequency band.

Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(II) : 마이크로파에 의한 실리콘의 질화반응 및 질화규소의 소결 (Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(II) : Microwave Nitridation of Silicon and Microwave Sintering of Silicon Nitride)

  • 배강;우상국;한인섭;서두원
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.354-359
    • /
    • 2011
  • Silicon nitride ceramics were prepared by microwave gas phase reaction sintering. By this method higher density specimens were obtained for short time and at low temperature, compared than ones by conventional pressureless sintering, even though sintering behaviors showed same trend, the relative density of sintered body inverse-exponentially increases with sintering temperature and/or holding time. And grain size of ${\beta}$-phase of the microwave sintered body is bigger than one of the conventional pressureless sintered one. Also they showed good bending strengths and thermal shock resistances.

Synthesis of Activated Carbon from Rice Husk Using Microwave Heating Induced KOH Activation

  • Nguyen, Tuan Dung;Moon, Jung-In;Song, Jeong-Hwan;Kim, Taik-Nam
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.321-327
    • /
    • 2012
  • The production of functional activated carbon materials starting from inexpensive natural precursors using environmentally friendly and economically effective processes has attracted much attention in the areas of material science and technology. In particular, the use of plant biomass to produce functional carbonaceous materials has attracted a great deal of attention in various aspects. In this study the preparation of activated carbon has been attempted from rice husks via a chemical activation-assisted microwave system. The rice husks were milled via attrition milling with aluminum balls, and then carbonized under purified $N_2$. The operational parameters including the activation agents, chemical impregnation weight ratio of the calcined rice husk to KOH (1:1, 1:2 and 1:4), microwave power heating within irradiation time (3-5 min), and the second activation process on the adsorption capability were investigated. Experimental results were investigated using XRD, FT-IR, and SEM. It was found that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area. The activated carbons prepared by microwave heating with an activation process have higher surface area and larger average pore size than those prepared by activation without microwave heating when the ratio with KOH solution was the same. The activation time using microwave heating and the chemical impregnation ratio with KOH solution were varied to determine the optimal method for obtaining high surface area activated carbon (1505 $m^2$/g).