• Title/Summary/Keyword: Microwave amplifier

Search Result 182, Processing Time 0.027 seconds

A 2.4 GHz-Band 100 W GaN-HEMT High-Efficiency Power Amplifier for Microwave Heating

  • Nakatani, Keigo;Ishizaki, Toshio
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • The magnetron, a vacuum tube, is currently the usual high-power microwave power source used for microwave heating. However, the oscillating frequency and output power are unstable and noisy due to the low quality of the high-voltage power supply and low Q of the oscillation circuit. A heating system with enhanced reliability and the capability for control of chemical reactions is desired, because microwave absorption efficiency differs greatly depending on the object being heated. Recent studies on microwave high-efficiency power amplifiers have used harmonic processing techniques, such as class-F and inverse class-F. The present study describes a high-efficiency 100 W GaN-HEMT amplifier that uses a harmonic processing technique that shapes the current and voltage waveforms to improve efficiency. The fabricated GaN power amplifier obtained an output power of 50.4 dBm, a drain efficiency of 72.9%, and a power added efficiency (PAE) of 64.0% at 2.45 GHz for continuous wave operation. A prototype microwave heating system was also developed using this GaN power amplifier. Microwaves totaling 400 W are fed from patch antennas mounted on the top and bottom of the microwave chamber. Preliminary heating experiments with this system have just been initiated.

Design of broad-band impedance matching networks for hybrid microwave amplifier applications (하이브리드 마이코로파 광대역 증폭기용 임피던스 정합회로 설계)

  • 김남태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.11-17
    • /
    • 1998
  • In this paper, the synthesis procedufe of impedance matching network is presented for broad-band microwave amplifier design, whereby amplifier operating in the octave bandwidth is designed and fabricated in detail. The transfer function of the matching netowrks is synthesized by chebyshev approximation and element values for the networks of specified topology are calculatd for various MILs and ripples. After the transistor is modeled by negative-image device model, the synthesis procedure for matching networks is applied to broad-band amplifier design which has electrical performance of about 12dB gain in 4 to 8GHz range. Experimental results obtained from the fabricated amplifier are shown to approach the electrical performance designed in the given frequency range. Construction of the impedance matching networks by transfer function synthesis is very useful method for the design of broad-band microwave amplifiers.

  • PDF

Efficiency Measurement of a Receiver for 5.8GHz Microwave Smartphone Charging (5.8GHz 마이크로파 스마트폰 충전을 위한 수신기의 효율측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.22-26
    • /
    • 2016
  • In this paper, we measured the efficiency of the receiver for 5.8GHz Microwave Smartphone Charging. We have designed and fabricated 1W and 2W power amplifier, respectively. A 1W power amplifier used a TC3531 power device of TRANSCOM Inc. In addition, a 2W power amplifier using the two TC3531 devices was constructed with divider and combiner. We used the Wilkinson divider theory for divider and combiner. The voltage was measured using the 1W and 2W power amplifier and integrated receivers to the distance of 50cm.

V-Band Power Amplifier MMIC with Excellent Gain-Flatness (광대역의 우수한 이득평탄도를 갖는 V-밴드 전력증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.623-624
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of V-band power amplifier MMIC with excellent gain-flatness for IEEE 802.15.3c WPAN system. The V-band power amplifier was designed using ETRI' $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The gains of the each stages of the amplifier were modified to have broadband characteristics of input/output matching for first and fourth stages and get more gains of edge regions of operating frequency range for second and third stages in order to make the gain-flatness of the amplifier excellently for wide band. The performances of the fabricated 60 GHz power amplifier MMIC are operating frequency of $56.25{\sim}62.25\;GHz$, bandwidth of 6 GHz, small signal gain ($S_{21}$) of $16.5{\sim}17.2\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-16{\sim}-9\;dB$, output reflection coefficient ($S_{22}$) of $-16{\sim}-4\;dB$ and output power ($P_{out}$) of 13 dBm. The chip size of the amplifier MMIC was $3.7{\times}1.4mm^2$.

  • PDF

A Design of High Efficiency Doherty Power Amplifier for Microwave Applications (마이크로파용 고효율 Doherty 전력증폭기 설계)

  • Oh Jeong-Kyun;Kim Dong-Ok
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.351-356
    • /
    • 2006
  • In this paper, the high efficiency Doherty power amplifier has been designed and realized for microwave applications. The Doherty amplifier has been implemented using silicon MRF 281 LDMOS FET. The RF performances cf the Doherty power amplifier (a combination of a class AB carrier amplifier and a bias-tuned class C peaking amplifier) have been compared with those of a class AB amplifier alone. The realized Doherty power amplifier P1dB output power has 33dBm at 2.3GHz frequency. Also the Doherty power amplifier shows 11dB gain and -17.8dB input return loss at 2.3GHz to 2.4GHz. The designed Doherty amplifier has been improved the average PAE by 10% higher efficiency than a class AB amplifier alone. The Maximum PAE of designed Doherty power amplifier has been 39%.

A Design of High Efficiency Doherty Power Amplifier for Microwave applications (마이크로파용 고효율 Doherty 전력 증폭기 설계)

  • Oh C.G.;Kim D.O.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.91-96
    • /
    • 2006
  • In this paper, the high efficiency Doherty power amplifier has been designed and realized for microwave applications. The Doherty amplifier has been implemented using silicon MRF 281 LOMOS FET. The RF performances of the Doherty power amplifier (a combination of a class AB carrier amplifier and a bias..tuned class C peaking amplifier) have been compared with those of a class AB amplifier alone. The realized Doherty power amplifier PldB output power has 33dBm at 2.3GHz frequency. Also the Doherty power amplifier shows 11dB gain and -17.8dB input return loss at 2.3GHz to 2.4GHz. The designed Doherty amplifier has been improved the average PAE by 10% higher efficiency than a class AB amplifier alone. The Maximum PAE of designed Doherty power amplifier has been 39%.

  • PDF

Design of wide Band Microwave Amplifier with Good Frequncy Characteristics (주파수 특성이 좋은 광대역 마이크로웨이브 증폭기의 설계)

  • Kang, Hee-Chang;park, Il;Chin, Youn-kang
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 1991
  • The new structure method of GaAs microwave amplifiers using DC block function and impedance transforming property of DC block/transformer(non-symmetrical two - microstrip coupled line and interdigital three - microstrip coupled line), instead of chip capacitor, is presented. The newly structured microwave amplifier showed wideband characteristics(bandwidth, 3.5 GHz) and flat frequency response. Interdigital three - microstrip coupled line which is used for microwave amplifier can be used to match amplifiers as well as DC blocking.

  • PDF

A 3-stage Wideband Q-band Monolithic Amplifier for WLAN

  • Kang, Dong-Min;Lee, Jin-Hee;Yoon, Hyung-Sup;Shim, Jae-Yeob;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1054-1057
    • /
    • 2002
  • The design and fabrication of Q-band 3-stage monolithic microwave integrated circuit(MMIC) amplifier for WLAN are presented using 0.2$\square$ AIGaAs/lnGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT). In each stage of the MMIC, a negative feedback is used for both broadband and good stability. The measurement results are achieved as an input return loss under -4dB, an output return loss under -10dB, a gain of 14dB, and a PldB of 17dBm at Q-band(36~44GHz). These results closely match with design results. The chip size is 2.8${\times}$1.3mm$^2$. This MMIC amplifier will be used as the unit cell to develop millimeter-wave transmitters for use in wideband wireless LAN systems.

  • PDF

Analysis of the linear Amplifier/Analog-Digital Converter Interface in a Digital Microwave Wideband Receiver (디지털 광대역 마이크로 웨이브 수신기에서의 선형 증폭기와 ADC 접 속의 해석)

  • 이민혁;장은영
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.110-113
    • /
    • 1998
  • An analysis of the relationship between a linear amplifier chain and an analog-to-digital converter(ADC) in a digital microwave widevand receiver, with respect to sensitivity and dynamic range issues, is presented. The effects of gain, third-order intermodulation products and ADC characteristics on the performance of the receiver are illustrated and design criteria for the linear amplifier chain given a specified ADC are developed. A computer program is used to calculate theretical receiver performance based on gain and third-order intermodulation product selections. Simulated results are also presented and compared with theoretical values.

  • PDF

Design and Fabrication of S-band Ultra High Power Transistorized Amplifier (마이크로파대 고출력 트란지스터 증폭기의 설계와 시작)

  • 심재철;김종련
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.5
    • /
    • pp.7-14
    • /
    • 1977
  • Conventionally, a TIVT has been used for high power amplification in the microwave frequency range. However, an ultra-high-power amplifier in the 2GHz range has successfully been designed and fabricated employing high power transistors developed recently and available commercially. In the design of the amplifier, a balanced-pair configuration is adopted in order to obtain very high microwave power, and a good impedance matching is achieved by making use of microstripline techniques. For the RF power divider as well as combiner, an approach of stripline directional coupler isadopted because of its easiness in fabrication. The coupler so designed and fabricated indicates a satisfactory performance as a quadrature hybrie coupler. Measurements on the amplifier developed for an immediate commercial application also exhibit excellent overall performance characteristics RF power output, 14 watts, gain 14dB, frequency bandwidth, 160MHz, effciency 40%.

  • PDF