• Title/Summary/Keyword: Microwave Sensor

Search Result 121, Processing Time 0.028 seconds

Development of a Energy-saving LED module Using K-band Microwave Motion Detecting Sensor (K대역 마이크로파 움직임 감지 센서를 이용한 에너지 절감형 LED 모듈 개발)

  • Kim, Howoon;Woo, Dong Sik
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.446-452
    • /
    • 2020
  • In this paper, we propose a energy-saving LED module using K-band microwave motion detecting sensor. To oscillate K-band microwave signal, An oscillator using a hairpin-type microstrip resonator was designed to increase stability and make fabrication easier. To radiate the microwave signal, a two-channel(TX/RX) patch antenna arrays was developed. Wilkinson power divider and ring hybrid mixer were developed and applied to obtain Doppler shift from the received signal. Shield cans were installed to protect the stability of the signals and unwanted external noise. The proposed motion detection sensor was mounted on a demonstration LED module and the energy saving performance through pre-test was verified.

An Experimental Study on the Evaluation of Mortat Unit-Water Content by Powder Ratio Using Frequency Domain Reflectometry Sensor (고주파수분센서를 활용한 분체 비율별 모르타르 단위수량 평가에 관한 실험적 연구)

  • Youn, Ji-Won;Lee, Seung-Yeop;Wi, Kwang-Woo;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.109-110
    • /
    • 2022
  • Currently, interest in the quality of concrete is increasing. Among the important factors for evaluating the quality of concrete, interest in unit-water content is also increasing. Currently, the air-meter method, the microwave oven drying method, the capacitance method, and the microwave penetration method are used to measure the unit-water content of concrete.. Among the above methods, except for the microwave method, the measurement method is complicated, portability is reduced, and economic efficiency is reduced. This research aims to measure a unit-water content by using a Frequency Domain Reflectometry(FDR) sensor that is economical, simple to measure, and portable among microwave methods. In addition, it is an experimental study to determine the accuracy of unit-water content using a single input residual model during deep learning to solve the limitations of the FDR sensor.

  • PDF

Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • The spatial size and variation of Arctic sea ice play an important role in Earth's climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

CORRECTION OF THE EFFECT OF RELATIVE WIND DIRECTION ON WIND SPEED DERIVED BY ADVANCED MICROWAVE SCANNING RADIOMETER

  • Konda, Masanori;Shibata, Akira
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.386-389
    • /
    • 2006
  • The sea surface wind speed (SSWS) derived by microwave radiometer can be contaminated by change of microwave brightness temperature owing to the angle between the sensor azimuth and the wind direction (Relative Wind Direction). We attempt to correct the contamination to the SSWS derived by Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite II (ADEOS-II), by applying the method proposed by Konda and Shibata (2004). The improvement of accuracy of the SSWS estimation amounts to roughly 60% of the error caused by the RWD effect.

  • PDF

Compact Microwave Heartbeat Proximity Sensor Under Human Body Movement (인체 움직임을 고려한 소형 근접 마이크로파 심박 센서)

  • Yun, Gi-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.63-69
    • /
    • 2020
  • In this paper, a small microwave sensor that can be applied to a wearable device is proposed because it can detect the heartbeat signal of a human body moving irregularly at low speed. It consist of balanced microstrip radiation patches in the 2.4 GHz ISM band, self-oscillation detection circuit, and feedback circuit. Based on the theoretical development and simulation, the validity of the proposed structure was confirmed and the manufactured prototype was tested. The board size of the circuit is as small as 65mm × 85㎟, and has a low power consumption of 60mW thanks to the simple RF circuit structure. Finally heartbeat signal has been obtained from a human body moving at low speed (0.5Hz) within a linear distance of 2 to 30mm close to the sensor and a lateral distance of ±20mm.

Development of New Generation Sea Surface Temperature

  • Hiroshi, Kawamura
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.634-637
    • /
    • 2002
  • In order to contribute to trial of the ocean weather forecasts, we have developed new generation sea surface temperature. It is clod free, high-spatial resolution daily SST product, which enables us to follow the movements of SST patterns relating to the oceanic variations. The product is produced through an objective analysis merging various infrared and microwave SST products.

  • PDF

A Study on the Optical Axis Alignment of Missile using the Dual-Mode Sensor (이중 센서를 이용한 유도탄 광축 정렬 연구)

  • Han, Seokchoo;Koh, Sanghoon;Yun, Kyungsub;Park, Donghyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.337-344
    • /
    • 2017
  • In this paper, the optical axis alignment(OAA) of an infrared sensor(IRS) using a microwave sensor(MWS) was presented as a method of an axis alignment to minimize the problems that could be caused by the misalignment of the two sensors in the missile including the dual-mode sensor. The azimuth(AZ) and elevation(EL) angles of the two targets used for each sensor test were calculated by using the transformation equation and the test results of the MWS and IRS, and then the proposed OAA was verified by comparing the angles. Furthermore, the validity of the proposed OAA was demonstrated by confirming the abnormality of the OAA through the test results of the electro optical head(EOH) of the IRS which was equipped with a tilt on the missile fuselage.

Non-Invasive Blood Glucose Sensor By Sub-Microwave Oscillator (준 마이크로파 발진기를 이용한 비 침습 혈당 센서)

  • Yun, Gi-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.9-16
    • /
    • 2017
  • In this paper, sub-microwave oscillator sensor is proposed to non-invasively monitor the glucose concentration level of the human biological tissue by oscillation frequency variation. Inductive slot in the ground plane of the microstrip line is combined with the biological tissue, to realize the resonator as a part of the oscillator sensor. The phantom box mimicking the human tissue is introduced for simulation of the resonator which resonance frequency correspondingly shifts up on three step glucose concentration levels(0, 400, 800 mg/dL). Oscillator sensor circuit is fabricated as a prototype. Pig tissues instead of human is used. Oscillation frequency shift of about 14 MHz per glucose level of 400 mg/dL has been successfully measured around 1,100 MHz. This proves that the proposed sensor is applicable to a blood glucose sensor.