• Title/Summary/Keyword: Microwave Plasma

Search Result 398, Processing Time 0.026 seconds

Physical Properties of Diamond-like Carbon Thin Films Prepared by a Microwave Plasma-Enhanced Chemical Vapor Deposition (마이크로웨이브 화학기상증착법으로 성장된 다이아몬드상 카본박막의 물리적인 특성연구)

  • Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.842-845
    • /
    • 2003
  • DLC thin films were prepared by microwave plasma-enhanced chemical vapor deposition method on silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gas mixture. The negative DC bias ($-450V{\sim}-550V$) was applied to enhance the adhesion between the film and the substrate. The films were characterized by Raman spectrometer. The surface morphology was observed by an atomic force microscope (AFM). And also, the friction coefficients were investigated by AFM in friction force microscope (FFM) mode, which were compared with the pin-on-disc (POD) measurement.

  • PDF

The Characteristics of c-BN Thin Films on High Speed Steel by Electron Assisted Hot Filament C.V.D Systems (EACVD법에 의한 고속도강에의 c-BN박막형성 및 특성에 관하여)

  • Lee, Gun-Young;Choe, Jean-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.87-92
    • /
    • 2006
  • The characteristic of interface layer and the effect of bias voltage on the microstructure of c-BN films were studied in the microwave plasma hot filament C.V.D process. c-BN films were deposited on a high speed steel(SKH-51) substrate by hot filament CVD technique assisted with a microwave plasma to develop a high performance of resistance coating tool. c-BN films were obtained at a gas pressure of 20 Torr, vias voltage of 300 V and substrate temperature of $800^{\circ}C$ in $B_2H_6-NH_3-H_2$ gas system. It was found that a thin layer of hexagonal boron nitride(h-BN) phase exists at the interface between c-BN layer and substrate.

A Study on the Microwave Reflection of Plasma in a Magnetic Field (방전프라즈마내 자계에 의한 마이크로파 반사특성)

  • 김봉열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 1969
  • The characteristics of microwave reflection in the media of cold gaseous plasma is analysed to various external magnetic flux density. The DC discharge plasma is generated in the rectangular waveguide which contains two electrodes and helium gas at the pressure of 10-2mm Hg. The reflected and transmitted power of microwave is measured when the electric field is parallel to, and perpendicular to the external magnetic field. It shows that the reflected power is increased as the magnetic flux density is increased in the parallel case, but the maximum value of the reflected power is occured at the cyclotron resonance (3120 Gauss) in the perpendicular case.

  • PDF

A Study on the Diamond Thin Films Synthesized by Microwave Plasma Enhance Chemical Vapor Deposition (마이크로웨이브 플라즈마 화학기상성장법에 의한 다이아몬드 박막의 합성에 관한 연구)

  • 이병수;이상희;박상현;유동현;이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.809-814
    • /
    • 1998
  • In this study, the metastable state diamond thin films have been deposited on Si substrates from methand-hydrogen and oxygen mixture usin gMicrowave Plasma Enhanced Chemical Vapor Deposition (MWPCVD) method. effects experimental parameters MWPCVD including methan concentrations, oxygen additions, operating pressure, deposition time on the growth rate and crystallinity were investigated. diamond thin film was synthesized under the following conditions: methane concentration of 0.5%(0.5sccm)∼5%(5sccm). oxygen concentration of 0∼80%(2.4sccm). operating pressure of 30Torr∼ 70Torr, deposition time of 1∼32hr. SEM, WRD, and Raman spectroscopy were employed to analyse the growth rate and morphology, crystallinity and prefered growth direction, and relative amounts of diamond and non=diamond phases respectively.

  • PDF

Growth of Highly Oriented Diamond Films by Microwave Plasma Chemical Vapor Deposition (마이크로파 플라즈마 화학기상증착법에 의한 HOD 박막 성장)

  • 이광만;최치규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • Highly oriented diamond (HOD) films in polycrystalline can be grown on the (100) silicon substrate by microwave plasma CVD. Bias enhanced nucleation (BEN) method was adopted for highly oriented diamond deposition with high nucleation density and uniformity. The substrate was biased up to -250[Vdc] and bias time required for forming a diamond film was varied up to 25 minutes. Diamond was deposited by using $\textrm{CH}_4$/CO and $H_2$ mixture gases by microwave plasma CVD. Nucleation density and degree of orientation of the diamond films were studied by SEM. Thermal conductivity of the diamond films was ∼5.27[W/cm.K] measured by $3\omega$ method.

  • PDF

Characteristics of Polysilicon Films Deposited on Silicon Wafers with Enlarged Microwave Plasma (대면적화된 마이크로파 플라즈마를 이용하여 실리콘 웨이퍼에 증착한 다결정 실리콘의 특성 연구)

  • Ryu, Geun-Geol
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.604-608
    • /
    • 1999
  • Semiconductor industry requires the development of new technology such as 300 mm technology, suitable for manufacturing the next generation dervices. A promising process for realizing 300 mm technology can be achieved by using enlarged microwave plasma chemical vapor deposition (MWCVD) technology. In this work, we used radial line slot antenna for enlarging microwave plasma area, and carried ut the deposition of polysilicon films using enlarged MWCVD for the first time in Korea. The results was as follows. Deposited polysilicon films showed various degrees of crystallinity as well as epitaxy to silicon substrates even at low temperature of $300^{\circ}C$. Deposition rates also controled crystallization behavior and slo deposition rates showed very high crystallinity. It could be said that enlarged MWCVD system and technology was worth to get attraction as one os future technologies for 1 G DRAM era.

  • PDF

Transient Response of Optically-Controlled Microwave Pulse through an Open-Ended Microstrip Lines

  • Kim, Jin-S.;Kim, Yong-K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1187-1190
    • /
    • 2004
  • In this paper we analyze the reflection characteristics of a dielectric microstrip line with an open-end termination containing optically induced plasma region, which are analyzed by the assumption that the plasma is distributed homogeneously in the laser illumination. The characteristics impedances resulting from the presence of plasma are evaluated the transmission line model. To estimate theoretically the characteristic response of same systems in the time domain, the Fourier transformation method is evaluated. The reflection characteristics of time response in microwave systems have been calculated.

  • PDF

Characterization of Atomic Emission Detector for Gas Chromatography Using Cylindrical Microwave Cavity (원통형 Microwave Cavity를 이용한 기체크로마토그라프 원자발광 검출기의 특성에 관한 연구)

  • Park, Young-Joo;Yoo, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.263-268
    • /
    • 1992
  • A plasma source with cylindrical microwave cavity was used as atomic emission detector for gas chromatography. Detection limits of several elements were determined for this system. Detection limits for bromine and sulfur were 0.46 pg/s and 0.51 ng/s, respectively. The plasma was stable at the range of flow rate of 10 to 20mL/min.

  • PDF

Microwave Synthesis of Titanium Silicalite-1 Using Solid Phase Precursors

  • Kim, K.Y.;Ahn, W.S.;Park, D.W.;Oh, J.H.;Lee, C.M.;Tai, W.P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.634-638
    • /
    • 2004
  • Titanium silicalite-1 (TS-1) molecular sieve was produced by microwave heating of amorphous titanium-containing solid precursors after impregnation with aqueous TPAOH solution. $SiO_2-TiO_2$ xerogel, sub-micron sized $SiO_2-TiO_2$ prepared by thermal plasma process, and Ti-containing mesoporous silica, Ti-HMS, were tested as the solid phase substrates. Highly crystalline product was obtained within 30 min. after microwave irradiation with yields over 90% using $SiO_2-TiO_2$ xerogel, which showed essentially identical physicochemical properties to TS-1 prepared by conventional hydrothermal method. Excellent catalytic activity was also obtained for 1-hexene epoxidation using $H_2O_2.\;SiO_2-TiO_2$ particles prepared by thermal plasma and Ti-HMS were found inferior as a substrate for TS-1, probably due to difficulties in wetting the surface uniformly with TPAOH.

Growth of Carbon Nanotubes by Microwave Plasma Enhanced Chemical Vapor Deposition (마이크로웨이브 플라즈마 화학기상증착법에 의한 탄소나노튜브의 성장특성)

  • Choi Sung-Hun;Lee Jae-Hyeoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.501-506
    • /
    • 2006
  • Carbon nanotubes (CNTs) were grown with a microwave plasma enhanced chemical vapor deposition (MPECVD) method, which has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the low temperature and the large area growth. MPECVD used methane ($CH_4$) and hydrogen ($H_2$) gas for the growth of CNTs. 10 nm thick Ni catalytic layer were deposited on the Ti coated Si substrate by RF magnetron sputtering method. In this work, the pretreatment was that the Ni catalytic layer in different microwave power (600, 700, and 800 W). After that, CNTs deposited on different pressures (8, 12, 16, and 24 Torr) and grown same microwave power (800 W). SEM (Scanning electron microscopy) images showed Ni catalytic layer diameter and density variations were dependent with their pretreatment conditions. Raman spectroscopy of CNTs shows that $I_D/I_G$ ratios and G-peak positions vary with pretreatment conditions.