• Title/Summary/Keyword: Microwave Plasma

Search Result 398, Processing Time 0.023 seconds

Quantification of Arsenic Species in Some Seafood by HPLC-AFS (HPLC-AFS를 이용한 해산물 중 비소 화학종 분리정량)

  • Jeong, Seung-Woo;Lee, Chae-Hyeok;Lee, Jong-Wha;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.496-503
    • /
    • 2021
  • Background: Considering the expenses of and difficulties in arsenic speciation by high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), alternative measurement methods should be useful, especially for large-scale research and projects. Objectives: A measurement method was developed for arsenic speciation using HPLC-atomic fluorescence spectrometry (HPLC-AFS) as an alternative to HPLC-ICP-MS. Methods: Total arsenic and toxic arsenic species in some seafoods were determined by atomic absorption spectrometry coupled with hydride vapor generation (AAS-HVG) and HPLC-AFS, respectively. Recovery rate of arsenic species in seafood was evaluated by ultra sonication, microwave and enzyme (pepsin) for the optimal extraction method. Results: Limits of detection of HPLC-AFS for As3+, dimethylarsinate (DMA), monomethylarsonate (MMA) and As5+ were 0.39, 0.53, 0.60 and 0.64 ㎍/L, respectively. The average accuracy ranged from 97.5 to 108.7%, and the coefficient of variation was in the range of 1.2~16.7%. As3+, DMA, MMA and As5+ were detected in kelp, the sum of toxic arsenic in kelp was 40.4 mg/kg. As3+, DMA, MMA and As5+ were not detected in shrimp and squid, but total arsenic (iAS and oAS) content in shrimp and squid analyzed by AAS-HVG were 18.1 and 24.7 mg/kg, respectively. Conclusions: HPLC-AFS was recommendable for the quantitative analysis method of arsenic species. As toxic arsenic species are detected in seaweeds, further researches are needed for the contribution degree of seafood in arsenic exposure.

Aluminum in rocks: Optimized microwave-assisted acid digestion and UV-Vis spectrophotometric measurement

  • Nguyen Thanh-Nho;Thai Huynh-Thuc;Le-Thi Anh-Dao;Do Minh-Huy;Le-Thi Huynh-Mai;Le Quang-Huy;Nguyen-Thi Kim-Sinh;Nguyen Cong-Hau
    • Analytical Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.216-223
    • /
    • 2023
  • Aluminium (Al) is one of the major elements in rocks and its concentration can be varied, depending on different rock types as well as sources. The present study aimed to propose an analytical method based on the UV-Vis as a cheap, simple, and common instrument equipped in most laboratories for Al quantification in rocks after the microwave assisted acid digestion. The aluminone and 8-hydroxyquinoline were investigated for the colorimetric assay. The results show that the 8-hydroxyquinoline reagent was more favorable in terms of the minimized affects of the potential interferences present in the digested solutions, i.e., Fe3+, Si4+ and F-. The calibration curve was constructed from 0.10 mg/L to 3.00 mg/L with the goodness of linearity (R2 = 0.9996). The limits of detection and quantification (LOD and LOQ) were estimated, i.e., 0.029 mg/L and 0.087 mg/L, respectively. The 8-hydroxyquinoline was applied to real rock samples, demonstrating favorable precision (RSD = 0.34 %-1.8 %) and no remarkable differences were found compared to the inductively coupled plasma-mass spectrometry (ICP-MS) as a reference measurement approach.

Elemental Analysis in Astragali Radix by Using ICP-AES and Determination of the Original Agricultural Place of Oriental Medicine by Using a Chemometrics (ICP-AES를 이용한 황기 속에 함유된 원소의 성분 분석과 Chemometrics를 이용한 한약재의 원산지 규명)

  • Kang, Mi Ra;Lee, Ick Hee;Jun, Hyuong;Kim, Yongseong;Lee, Sang Chun
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.311-316
    • /
    • 2001
  • We have investigated the trace amount in an oriental medicine in oder to determine the geographical origin by using inductively coupled plasma-atomic emission spectrometry(ICP-AES) and chemometric anlysis with principal component analysis(PCA) and pattern recognition. Astragali Radix from several agricultural places in Korea was selected as an example of the oriental medicine and analyzed by ICP-AES. The dried Astragali Radix sample was treated with $HNO_3$ and $H_2O_2$, then digested using microwave oven. Elements such as Mg, Al, K, Ca, Ti, Mn, Fe, Cu, Zn, and Ba with different concentrations were found an used for the identification of the origin of agriculture places. Especially, the concentration of Al, Fe, Zn and Ti were employed to investigate the relationship between. Astragali Radix and the agricultural places by PCA and pattern recognition. We have made a program that is based on chemometrics in analytical spectroscopy. The results of the chemometrics analysis indicated that a distinction among Yechon and Chechon, Chungson, Kurye and Chinese Astragali Radix could be made. We believe that principal component analysis(PCA) and pattern recognition is a valuable tool to identify the origin of Astragali Radix in terms of the agricultural place.

  • PDF

Heavy Metal Contents of Vegetables from Korean Markets (국내에서 유통 중인 채소류의 중금속 함량에 관한 연구)

  • Yoo, Ha-Young;Jung, Jin-Joo;Choi, Eun-Ju;Kang, Sung-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.502-507
    • /
    • 2010
  • This study estimated the heavy metal contents of vegetables grown in Korea (n=234). The samples were digested using the microwave method. The contents of heavy metals (Pb, Cd, As, Cr, Cu, Mn, and Zn) were determined using inductively-coupled plasma spectrometry (ICP). The average values of heavy metals in vegetables were as follows [mean (minimum-maximum), mg/kg)]; Pb 0.0026 (ND-0.0313), Cd 0.0017 (ND-0.0280), As 0.0005 (ND-0.0332), Cr 0.0156 (0.0010-0.1798), Cu 0.3767 (0.0556-1.3980), Mn 3.0214 (0.0182-26.4100), and Zn 3.5796 (0.8300-14.4600). The heavy metal contents of vegetables available on the domestic market were almost the same as or lower than those reported in other studies. Further, the weekly average intake of heavy metals was lower than the Provisional Tolerable Weekly Intake (PTWI) or the Provisional Maximum Tolerable Daily Intake (PMTDI), which was established by the FAO/WHO. Our results can be utilized as a reference to establish specific standards for various vegetables in Korea.

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate (초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과)

  • Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

Growth and Chrarcterization of $SiO_x$ by Pulsed ECR Plasma (Pulsed ECR PECVD를 이용한 $SiO_x$ 박막의 성장 및 특성분석)

  • Lee, Ju-Hyeon;Jeong, Il-Chae;Chae, Sang-Hun;Seo, Yeong-Jun;Lee, Yeong-Baek
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.212-217
    • /
    • 2000
  • Dielectric thin films for TFT(thin film transistor)s, such as silicon nitride$(Si_3N_4)$ and silicon oxide$(SiO_2)$, are usually deposited at $200~300^{\circ}C$. In this study, authors have tried to form dielectric films not by deposition but by oxidation with ECR(Electron Cyclotron Resonance) oxygen plasma, to improve the interface properties was not intensionally heated during oxidation. THe oxidation was performed consecutively without breaking vacuum after the deposition of a-Si: H films on the substrate to prevent the introduction of impurities. In this study, especially pulse mode of microwave power has been firstly tried during FCR oxygen plasma formation. Compared with the case of the continuous wave mode, the oxidation with the pulsed ECR results in higher quality silicon oxide$SiO_X$ films in terms of stoichiometry of bonding, dielectric constants and surface roughness. Especially the surface roughness of the pulsed ECR oxide films dramatically decreased to one-third of that of the continuous wave mode cases.

  • PDF

RF and Optical properties of Graphene Oxide

  • Im, Ju-Hwan;Rani, J.R.;Yun, Hyeong-Seo;O, Ju-Yeong;Jeong, Yeong-Mo;Park, Hyeong-Gu;Jeon, Seong-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.68.1-68.1
    • /
    • 2012
  • The best part of graphene is - charge-carriers in it are mass less particles which move in near relativistic speeds. Comparing to other materials, electrons in graphene travel much faster - at speeds of $10^8cm/s$. A graphene sheet is pure enough to ensure that electrons can travel a fair distance before colliding. Electronic devices few nanometers long that would be able to transmit charge at breath taking speeds for a fraction of power compared to present day CMOS transistors. Many researches try to check a possibility to make it a perfect replacement for silicon based devices. Graphene has shown high potential to be used as interconnects in the field of high frequency electrical devices. With all those advantages of graphene, we demonstrate characteristics of electrical and optical properties of graphene such as the effect of graphene geometry on the microwave properties using the measurements of S-parameter in range of 500 MHz - 40 GHz at room temperature condition. We confirm that impedance and resistance decrease with increasing the number of graphene layer and w/L ratio. This result shows proper geometry of graphene to be used as high frequency interconnects. This study also presents the optical properties of graphene oxide (GO), which were deposited in different substrate, or influenced by oxygen plasma, were confirmed using different characterization techniques. 4-6 layers of the polycrystalline GO layers, which were confirmed by High resolution transmission electron microscopy (HRTEM) and electron diffraction analysis, were shown short range order of crystallization by the substrate as well as interlayer effect with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups on its layers. X-ray photoelectron Spectroscopy (XPS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation, and Fourier Transform Infrared spectroscopy (FTIR) and XPS analysis shows the changes in oxygen functional groups with nature of substrate. Moreover, the photoluminescent (PL) peak emission wavelength varies with substrate and the broad energy level distribution produces excitation dependent PL emission in a broad wavelength ranging from 400 to 650 nm. The structural and optical properties of oxygen plasma treated GO films for possible optoelectronic applications were also investigated using various characterization techniques. HRTEM and electron diffraction analysis confirmed that the oxygen plasma treatment results short range order crystallization in GO films with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups. In addition, Electron energy loss spectroscopy (EELS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation and XPS analysis shows that epoxy pairs convert to more stable C=O and O-C=O groups with oxygen plasma treatment. The broad energy level distribution resulting from the broad size distribution of the $sp^2$ clusters produces excitation dependent PL emission in a broad wavelength range from 400 to 650 nm. Our results suggest that substrate influenced, or oxygen treatment GO has higher potential for future optoelectronic devices by its various optical properties and visible PL emission.

  • PDF

Effect of Deposition Pressure on the Conductivity and Optical Characteristics of a-Si:H Films (증착 압력이 a-Si:H막의 전도도와 광학적 특성에 미치는 영향)

  • Jeon, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.98-104
    • /
    • 1999
  • In this work, we investigated hydrogen content, bond structure, and electrical properties of a-Si:H films prepared by ECR plasma CVD as a function of pressure. In general, the photo sensitivity of a-Si:H films prepared by CVD method decreases as the deposition rate increases, but the photo sensitivity of a-Si:H films prepared by ECR plasma deposition method increases as the deposition rate increases. In the same condition of microwave power, the ratio of $SiH_4/H_2$, and pressure, though film thickness increases linearly with deposition time and hydrogen content in the film is constant, photo conductivity can be decreased because $SiH_2$ bond is made more than SiH bond in the short reaction time. According to increase pressure in the chamber, SiH bond in the film increase and optical energy gap decrease. So, photo conductivity can be increased. But photo sensitivity decreased as dark conductivity increase. It must be grown in the condition of low pressure and hydrogen gas for taking the a-Si:H film of high quality.

  • PDF

Optical and Electrical Properties of Fluorine-Doped Tin Oxide Prepared by Chemical Vapor Deposition at Low Temperature (저온 증착된 불소도핑 주석 산화 박막의 광학적·전기적 특성)

  • Park, Ji Hun;Jeon, Bup Ju
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.517-524
    • /
    • 2013
  • The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film with a hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45 GHz of high ionization energy were investigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity were obtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron deposition positions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. The surface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined using SEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonance condition was uniformly formed in at a position 16 cm from the center along the Z-axis. The plasma spatial distribution of magnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. The relative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current range of 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50 cm revealed that the grains were uniformly distributed with sizes in the range of 2~7 nm. In our experimental range, the electrical resistivity of film was able to observe from $1.0{\times}10^{-2}$ to $1.0{\times}10^{-1}{\Omega}cm$ where optical transmittance at 550 nm was 87~89 %. These properties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.

Determination of Cd and Pb in Human Blood by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry : International Comparison (동위원소희석 질량분석법에 의한 혈액 중 Cd, Pb 성분의 측정 : 국제공동분석)

  • Park, C.J.;Suh, J.K.;Lee, S.H.
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.145-160
    • /
    • 1996
  • Inorganic analytical laboratory of Korea Research Institute of Standards and Science participated in an interlaboratory comparison program operated by Quebec Toxicology Centre of Canada in 1994 and again in 1995. The objective of this program is to enable participating laboratories to assess reproducibility and accuracy of their analytical results for trace toxic elements in human biological fluids. This laboratory determined Cd and Pb concentrations in 3 levels of human blood samples by isotope dilution inductively coupled plasma mass spectrometry. 0.5mL of blood sample is added to the digestion bomb together with 2mL of nitric acid and enriched spike isotopes and then decomposed in the microwave digestion system. The decomposed sample is diluted to 10mL and nebulized into ICP-MS. The Cd and Pb values reported by all participating laboratories are presented and compared. The values reported by this laboratory are within the acceptable range of target values.

  • PDF