• 제목/요약/키워드: Microwave Plasma

검색결과 398건 처리시간 0.037초

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

Comparative Study on Microwave Probes for Plasma Density Measurement by FDTD Simulations

  • Kim, D.W.;You, S.J.;Na, B.K.;Kim, J.H.;Chang, H.Y.;Oh, W.Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.218.1-218.1
    • /
    • 2014
  • In order to measure the absolute plasma density, various probes are proposed and investigated and microwave probes are widely used for its advantages (Insensitivity to thin non-conducting material deposited by processing plasmas, High reliability, Simple process for determination of plasma density, no complicate assumptions and so forth). There are representative microwave probes such as the cutoff probe, the hairpin probe, the impedance probe, the absorption probe and the plasma transmission probe. These probes utilize the microwave interactions with the plasma-sheath and inserted structure (probe), but frequency range used by each probe and specific mechanisms for determining the plasma density for each probe are different. In the recent studies, behaviors of each microwave probe with respect to the plasma parameters of the plasma density, the pressure (the collision frequency), and the sheath width is abundant and reasonably investigated, whereas relative diagnostic characteristics of the probes by a comparative study is insufficient in spite of importance for comprehensive applications of the probes. However, experimental comparative study suffers from spatially different plasma characteristics in the same discharge chamber, a low-reproducibility of ignited plasma for an uncertainty in external discharge parameters (the power, the pressure, the flow rate and so forth), impossibility of independently control of the density, the pressure, and the sheath width as well as expensive and complicate experimental setup. In this paper, various microwave probes are simulated by finite-different time-domain simulation and the error between the input plasma density in FDTD simulations and the measured that by the unique microwave spectrums of each probe is obtained under possible conditions of plasma density, pressure, and sheath width for general low-temperature plasmas. This result shows that the each probe has an optimum applicable plasma condition and reliability of plasma density measurement using the microwave probes can be improved by the complementary use of each probe.

  • PDF

무전극 마이크로웨이브 플라즈마 토치와 응용 (Electrodelss Plasma Torch Powered by Microwave and Its Applications)

  • 홍용철;전형원;노태협;이봉주;엄환섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.889-892
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Lastly, we briefly report an underway research, which is remediation of soils contaminated with oils, volatile organic compounds, heavy metals, etc.

  • PDF

Advanced Microwave Plasma Technology for Liquid Treatment

  • Toyoda, Hirotaka;Takahashi, T.;Takada, N.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.121.1-121.1
    • /
    • 2014
  • Recently, much attention has been given to plasma production under liquid and its applications [1]. However, most of plasma production techniques reported so far utilize high voltage dc, ac, rf or microwave power [2], where damage to discharge electrodes and small discharge volume are remained issues. As an alternative of plasma production method under liquid, we have proposed pulsed microwave excited plasma using slot antenna, where damage to the slot electrode can be minimized and plasma volume can be increased. We have also reported improvement of treatment efficiency with use of reduced-pressure condition during the discharge [3]. To realize low pressure conditions in liquid, various alternative technique can be considered. One possible technique is simultaneous injection of microwave power and ultrasonic wave. Ultrasonic wave induces pressure fluctuation with the wave propagation and is so far used for cavitation production in the water. We propose utilization of reduced pressure induced by ultrasonic cavitation for improvement of the plasma production. Correlation between the plasma production and the ultrasonic power will be discussed.

  • PDF

Development of Steam Plasma-Enhanced Coal Gasifier and Future Plan for Poly-Generation

  • Hong, Yong-Cheol;Lho, Taihyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • 한국표면공학회지
    • /
    • 제42권3호
    • /
    • pp.139-144
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Finally, we briefly report treatment of soils contaminated with oils, volatile organic compounds, heavy metals, etc., which is an underway research in our group.

마이크로파를 이용한 플라즈마 발생에 관한 연구 (A study on the generating plasma by microwave)

  • 황기웅;이정해
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.300-303
    • /
    • 1987
  • A microwave plasma generating system has been designed to study the properties of plasma. A microwave(2.45GHz) generated by the magnetron is transmitted to the cylindrical cavity through the the rectangular wave guide to generate hydrogen plasma. The electron temperature and the plasma density are measured by the Double Langmuir probe. A dilectric such as alumina is heated by the microwave add plasma. The surface temperature varies with the neutral gas pressure.

  • PDF

Palm-Size-Integrated Microwave Power Module at 1.35-GHz for an Atmospheric Pressure Plasma for biomedical applications

  • Myung, C.W.;Kwon, H.C.;Kim, H.Y.;Won, I.H.;Kang, S.K.;Lee, J.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.498-498
    • /
    • 2013
  • Atmospheric Pressure Plasmas have pioneered a new field of plasma for biomedical application bridging plasma physics and biology. Biological and medical applications of plasmas have attracted considerable attention due to promising applications in medicine such as electro-surgery, dentistry, skin care and sterilization of heat-sensitive medical instruments [1]. Traditional approaches using electronic devices have limits in heating, high voltage shock, and high current shock for patients. It is a great demand for plasma medical industrial acceptance that the plasma generation device should be compact, inexpensive, and safe for patients. Microwave-excited micro-plasma has the highest feasibility compared with other types of plasma sources since it has the advantages of low power, low voltage, safety from high-voltage shock, electromagnetic compatibility, and long lifetime due to the low energy of striking ions [2]. Recent experiment [2] shows three-log reduction within 180-s treatment of S. mutans with a low-power palm-size microwave power module for biomedical application. Experiments using microwave plasma are discussed. This low-power palm-size microwave power module board includes a power amplifier (PA) chip, a phase locked loop (PLL) chip, and an impedance matching network. As it has been a success, more compact-size module is needed for the portability of microwave devices and for the various medical applications of microwave plasma source. For the plasma generator, a 1.35-GHz coaxial transmission line resonator (CTLR) [3] is used. The way of reducing the size and enhancing the performances of the module is examined.

  • PDF

광-마이크로파 기반 유도플라즈마의 과도응답 특성에 관한 연구 (Study of Transient Response in Non-uniform Plasma Layer with Optically-Controlled Microwave Pulses)

  • 왕설;최유순;박종구;김용갑
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1174-1179
    • /
    • 2009
  • In this paper we develop the characteristic of density on non-uniform plasma in different layer of the semiconductor with optically controlled microwave pulses. The transient response of the microwave pulses in different plasma layer has been evaluated by calculating the variation of the reflection function of dielectric microstrip lines. The lines has used under open-ended termination containing optically induced plasma region, which has illuminated a laser source. The characteristics impedances resulting from the presence of plasma are evaluated by the transmission line model. The analyzes the variation of transient response in a 0.01cm layer near the surface for frequency range from 1GHz to 128GHz. The diffusion length LD is larger than compared to the absorption depth $l/_{\alpha}l$. The variation of characteristic response in plasma layer with microwave pulses which has in deferentially localized has been evaluated analytically.

Characteristics of Linear Microwave Plasma Using the Fluid Simulation and Langmuir Probe Diagnostics

  • 서권상;한문기;윤용수;김동현;이해준;이호준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.158.1-158.1
    • /
    • 2013
  • Microwave는 일반적으로 300 [MHz]~30 [GHz] 사이의 주파수를 가지는 전파로 1 [m] 이하의 파장을 가진다. Microwave를 이용한 플라즈마의 경우 낮은 이온 에너지, 효율적인 전자 가열, 넓은 동작압력 범위, 높은 밀도 등의 장점을 가지고 있어 PECVD(Plasma Enhanced Chemical Vapor Deposition)에 적합한 플라즈마 소스라고 할 수 있다. 또한 Microwave는 파장의 길이가 증착이 이루어지는 진공 챔버의 길이보다 매우 작기 때문에 대면적 적용성이 용이하므로 현재 많은 연구가 이루어지고 있다. 본 연구에서는 Fluid Simulation을 통해 Maxwell's equation, continuity equation, electromagnetic wave equation 등을 이용하여 Microwave의 파워 및 압력에 따른 플라즈마 parameter를 계산하고, 자체 제작한 Linear microwave plasma 장치에서 정전 탐침(Langmuir Probe)을 이용하여 플라즈마 Parameter를 측정하였다. 또한 Simulation 결과와 실험결과를 비교 분석하였다.

  • PDF

Microwave Plasma Sterilization System을 이용한 배추 절임수의 미생물 저감화 (Microbial Inactivation in Kimchi Saline Water Using Microwave Plasma Sterilization System)

  • 유동진;신윤지;김현진;송현정;이지혜;장성애;전소정;홍순택;김성재;송경빈
    • 한국식품영양과학회지
    • /
    • 제40권1호
    • /
    • pp.123-127
    • /
    • 2011
  • 김치 제조 공정에서 사용되는 김치 절임수의 미생물학적 안전성 확보와 재활용을 위한 연구로써, 본 연구에서는 microwave plasma sterilization system을 이용한 김치 절임수의 미생물 수 저감화를 위하여, E. coli O157:H7, L. monocytogenes, S. Typhimurium에 대한 살균 효과를 측정하고, 또한 사용한 김치 절임수에 본 장치를 적용하였다. 김치 공장에서 반복 사용한 절임수에 있는 coliform, E. coli, Salmonella spp., total aerobic bacteria, yeasts and molds가 사용 횟수가 늘어남에 따라 미생물 수가 증가하였다. Microwave plasma를 이용한 살균처리에서는 E. coli O157:H7, L. monocytogenes, S. Typhimurium의 $D_{10}$-value가 0.48, 0.52, 0.45 cycle로 각각 측정되었고, 또한 1회 사용한 절임수에 microwave plasma sterilization system 적용 시, coliform, E. coli, Salmonella spp., total aerobic bacteria, yeasts and molds 숫자가 유의적으로 감소하였다. 따라서 본 연구 결과, 김치공장의 김치 절임수를 재사용하기 위해서 microwave plasma sterilization system을 이용한 살균방법이 적합하다고 판단된다.