• Title/Summary/Keyword: Microvibration control

Search Result 14, Processing Time 0.023 seconds

Application of Smart Isolation Platform for Microvibration Control of High-Tech Industry Facilities (첨단기술산업 시설물의 미진동제어를 위한 스마트 면진플랫폼의 적용)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In this study, a smart isolation platform has been developed for control of microvibration of high-technology facilities, such as semi-conductor plants and TFT-LCD plants. Previously, microvibration control performance of a smart base isolation system has been investigated. This study compared microvibration control performance of a smart isolation platform with that of conventional base isolation and fixed base. For this purpose, train-induced ground acceleration is used for time history analysis. An MR damper was used to compose a smart isolation platform. A fuzzy logic controller was used as a control algorithm and it was optimized by a multi-objective genetic algorithm. Numerical analysis shows that a smart isolation platform can effectively control microvibration of a high-technology facility subjected to train-induced excitation compared with other models.

Smart Microvibration Control of High-Tech Industry Facilities using Multi-Objective Genetic Algorithm (다목적 유전자알고리즘을 이용한 첨단기술산업 시설물의 스마트 미진동제어)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.37-45
    • /
    • 2013
  • Reduction of microvibration is regarded as important in high-technology facilities with high precision equipments. In this paper, smart control technology is used to improve the microvibration control performance. Mr damper is used to make a smart base isolation system amd fuzzy logic control algorithm is employed to appropriately control the MR damper. In order to develop optimal fuzzy control algorithm, a multi-objective genetic algorithm is used in this study. As an excitation, a train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Numerical simulation results show that the multi-objective genetic algorithm can provide optimal fuzzy logic controllers for smart base isolation system and the smart control system can effectively reduce microvibration of a high-technology facility subjected to train-induced excitation.

Protective systems for high-technology facilities against microvibration and earthquake

  • Yang, Jann N.;Agrawal, Anil K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.561-575
    • /
    • 2000
  • Microvibration of high technology facilities, such as semiconductor plants and facilities with high precision equipments, due to nearby road and rail traffic has attracted considerable attention recently. In this paper, a preliminary study is conducted for the possible use of various protective systems and their performance for the reduction of microvibration. Simulation results indicate that passive base isolation systems, hybrid base isolation systems, passive floor isolation systems, and hybrid floor isolation systems are quite effective and practical. In particular, the performances of hybrid floor isolation systems are remarkable. Further, passive energy dissipation systems are not effective for the reduction of microvibration. Finally, the protections against both microvibration and earthquake are also investigated and presented.

Active Microvibration Control System Using Maglev Actuator (자기부상방식의 능동 미세진동 제어시스템)

  • Lee, Joo-Hoon;Lee, Se-Han;Hwang, Don-Ha;Kim, Yong-Joo;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2492-2494
    • /
    • 2004
  • A system, featuring the electromagnetic levitation actuator for control in the vertical direction, of active microvibration control was proposed. The main components of this system are a vibration isolation table with built-in acceleration sensors for detecting microvibration, electromagnetic levitation actuators with built-in permanent magnets and electromagnets, and a digital controller with high precision signal converters.

  • PDF

Microvibration Control of High Technology Facilities Subjected to Train-induced Excitation using Smart Base Isolation (열차진동하중을 받는 첨단시설물의 스마트 면진시스템을 이용한 미진동제어)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.99-108
    • /
    • 2012
  • Microvibration problem of high-technology facilities, such as semi-conductor plants and TFT-LCD plants, has been considered as important factors that affects the performance of products and thus it is regarded as important in facilities with high precision equipments. In this paper, various base isolation control systems are used to investigate their microvibration control performance. To this end, train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Based on numerical simulation results, it has been verified that smart base isolation system can control microvibration of a high-technology facility subjected to train-induced excitation.

Development of a Hybrid Mount System Combined Airspring with Piezostack Actuator for Microvibration (공기스프링과 압전작동기를 결합한 복합형 미진동 방진마운트 시스템 개발)

  • Moon, S.J.;Jung, H.J.;Shin, Y.H.;Jang, D.D.;Jeong, J.A.;Moon, Y.J.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.56-65
    • /
    • 2011
  • A new hybrid mount system is proposed for microvibration control in a high-tech factory. The mount consists of an airspring as a passive device and a piezostack actuator as an active device. The two devices are connected in series. Some numerical simulations and experimental tests are carried out to evaluate isolation performance of the mount system comprising of four proposed hybrid mounts. As a control logic, the specific algorithm is adopted for considering multiple target frequencies of excitation based on a Filtered-X LMS algorithm. The results are compared with isolation performance of the passive airspring mount system. It is confirmed that the proposed hybrid mount system has great performance on microvibration.

Active Vibration Control System Design for Nano-scale Stage (초정밀 스테이지용 능동 진동제어시스템 설계)

  • Lee, Joo-Hoon;Lee, Se-Han;Hwang, Don-Ha;Kim, Yong-Joo;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2495-2497
    • /
    • 2004
  • A system, featuring the hybrid isolator for control in the vertical direction, of active microvibration control was proposed. The main components of this system are a stage vibration isolation table with built-in acceleration sensors for detecting microvibration, hybrid isolators and a digital controller with high precision signal converters. The vibration control algorithm is focused on settling-time critical application and feedback/feedforward combination.

  • PDF

Analytical & Experimental Study on Microvibration Effects of Satellite (인공위성의 미소 진동 영향성에 관한 해석 및 실험적 연구)

  • Park, Geeyong;Lee, Dae-Oen;Yoon, Jae-San;Han, Jae-Hung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.533-539
    • /
    • 2013
  • Number of components and payload systems installed in satellites were found to be exposed to various disturbance sources such as the reaction wheel assembly, the control moment gyro, coolers, and others. A micro-level of vibration can introduce jitter problems into an optical payload system and cause significant degradation of the image quality. Moreover, the prediction of on-orbit vibration effects on the performance of optical payloads during the development process is always important. However, analyzing interactions between subsystems and predicting the vibration level of the payloads is extremely difficult. Therefore, this paper describes the analytical and experimental approach to microvibration effects on satellite optical payload performance with integrated jitter analysis framework, micro vibration emulator and satellite structure testbed.

  • PDF

Analytical & Experimental Study on Microvibration Effects of Satellite (인공위성의 미소 진동 영향성에 관한 해석 및 실험적 연구)

  • Park, Geeyong;Lee, Dae-Oen;Yoon, Jae-San;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.5-13
    • /
    • 2014
  • Number of components and payload systems installed in satellites were found to be exposed to various disturbance sources such as the reaction wheel assembly, the control moment gyro, coolers, and others. A micro-level of vibration can introduce jitter problems into an optical payload system and cause significant degradation of the image quality. Moreover, the prediction of on-orbit vibration effects on the performance of optical payloads during the development process is always important. However, analyzing interactions between subsystems and predicting the vibration level of the payloads is extremely difficult. Therefore, this paper describes the analytical and experimental approach to microvibration effects on satellite optical payload performance with integrated jitter analysis frame-work, microvibration emulator and satellite structure testbed.

Design of Hybrid Electromagnetic Actuator against Microvibration (미진동 저감을 위한 복합형 전자기식 액추에이터 설계)

  • Moon, S.J.;Choi, S.M.;Jeong, J.A.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.299-304
    • /
    • 2009
  • A hybrid electromagnetic actuator with an air spring is designed so as to achieve the desired isolation reduce the vibration efficiency on the floor vibration. The performance specification of the hybrid electromagnetic actuator is determined based on the vibration criterion for vibration-sensitive equipment. In basic design stage of the electromagnetic actuator, the simple reluctance method is adapted to analyze magnetic circuits. The result is verified by finite element analysis using ANSYS Emag. Finally, some design parameters are optimized under several constraint conditions. Through this study, the design procedure for a specific electromagnetic actuator is set up using a simple reluctance method.

  • PDF