• Title/Summary/Keyword: Microtubule

Search Result 282, Processing Time 0.035 seconds

The Effect of Treadmill Exercise on Tau Hyperphosphorylayion in an Aged Transgenic Mouse Model of Taupathies

  • Wang, Seong-Hwan;Kang, Eun-Bum;Kwon, In-Su;Koo, Jung-Hoon;Shin, Kwang-O;Jang, Yong-Chul;Um, Hyun-Sub;Oh, Yoo-Sung;Kim, Chul-Hyun;Cho, In-Ho;Cho, Joon-Yong
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.93-100
    • /
    • 2012
  • Alzheimer's disease (AD) is the most common cause of dementia in adults. Microtubule associated protein tau is abnormally phosphorylated in AD and aggregates as paired helical filaments (PHFs) in neurofibrillary tangles (NFTs). NFTs are the most common intraneuronal inclusion in the brains of patients with AD and have been implicated in mediating neuronal cell death and cognitive deficit. Aberrant phosphorylation of tau is an early pathological event in AD, but the underlying mechanisms are unclear. MAP kinases are a family of Serine/Threonine (Ser/Thr) kinases that involved hyper - phosphorylation of tau in AD. The purpose of this study was to investigate the effect of treadmill exercise on phosphorylation of tau level and activation of MAPKs including JNK, ERK, p38-MAPK. To address this, Tg mouse model of AD, Tg-NSE/hTau 23, which expresses human tau 23 in the brain, was chosen. Animals were subjected to treadmill exercise for 12 weeks from 24 months of age. Treadmill exercise in Tg group improved cognitive function compared with Tg-SED group in watermaze test. In addition, treadmill exercised Tg mice significantly reduced the activation of JNK54/46, p38-MAPK and tau (Ser404, Ser202, Thr231), and increased activation of ERK44/42 in cerebral cortex. These results suggest that treadmill exercise may provide a therapeutic potential to alleviate the tau pathology like AD.

Synergistic anticancer effect of acteoside and temozolomide-based glioblastoma chemotherapy

  • Tae Woong Hwang;Dong Hun Kim;Da Bi Kim;Tae Won Jang;Gun-Hwa Kim;Minho Moon;Kyung Ah Yoon;Dae Eun Choi;Jae Ho Park;Jwa-Jin Kim
    • International Journal of Molecular Medicine
    • /
    • v.43 no.3
    • /
    • pp.1478-1486
    • /
    • 2019
  • Temozolomide (TMZ) is an alkylating agent commonly used as a first-line treatment for high-grade glioblastoma. However, TMZ has short half-life and frequently induces tumor resistance, which can limit its therapeutic efficiency. In the present study, it was hypothesized that combined treatment with TMZ and acteoside has synergistic effects in glioblastoma therapy. Using cell viability and wound-healing assays, it was determined that this treatment regimen reduced cell viability and migration to a greater extent than either TMZ or acteoside alone. Following previous reports that TMZ affected autophagy in glioma cells, the present study examined the effects of TMZ + acteoside combination treatment on apoptosis and autophagy. The TMZ + acteoside combination treatment increased the cleavage of caspase-3 and levels of B-cell lymphoma 2 (Bcl-2)-associated X protein and phosphorylated p53, and decreased the level of Bcl-2. The combination treatment increased microtubule-associated protein 1 light chain 3 and apoptosis-related gene expression. It was also determined that TMZ + acteoside induced apoptosis and autophagy through the mitogen-activated protein kinase signaling pathway. These findings suggest that acteoside has beneficial effects on TMZ-based glioblastoma therapy.

ICP5249 Promotes Hair Growth by Activating the AMPK-Autophagy Signaling Pathway

  • Jung Ok Lee;Yu-jin Kim;You Na Jang;Jung min Lee;Kayoung Shin;Sekyoo Jeong;Hwa-Jee Chung;Beom Joon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1810-1818
    • /
    • 2024
  • Autophagy is essential for regulating hair growth. Accordingly, we developed autophagy activator ICP5249 (pentasodium tetracarboxymethyl palmitoyl dipeptide) and investigated its potential role in hair growth. We evaluated its effect on hair growth using in vitro human dermal papilla cells (hDPCs) culture model, human hair follicles (hHFs) organ culture model, and telogenic mouse model. ICP5249 increased hDPCs proliferation and alkaline phosphatase (ALP) expression. It also increased microtubule-associated protein (MAP) light chain 3-II (LC3-II) expression and AMP-activated protein kinase α (AMPKα) and unc-51-like kinase 1 (ULK1) phosphorylation in hDPCs. ICP5249 extended the length of hHFs and increased LC3-II please revised from LC3 II to LC3-II in all manuscript expression. Consistently, ICP5249 also significantly increased hair growth area, dermis thickness, and anagen and telogen ratio in telogenic mice. Furthermore, it upregulated Ki-67 and LC3-II expression and AMPKα phosphorylation on the mice's dorsal skin. To investigate whether AMPK regulates ICP5249-induced hair growth, following treatment with the compound C, AMPK inhibitor, the activity of ICP5249 was evaluated. The effects of ICP5249 on hair growth were assessed following pretreatment with the AMPK inhibitor compound C. The results showed that compound C suppressed ICP5249-mediated proliferation and hair inductivity in hDPCs. Additionally, compound C inhibited ICP5249-mediated hair growth area, dermis thickness, anagen and telogen ration, and LC3-II expression in mice, suggesting that ICP5249 promotes hair growth by modulating autophagy, with AMPKα playing a regulatory role in this process. Taken together, we demonstrate that ICP5249 has the potential as an ingredient for improving hair growth.

Licochalcone C Induces Autophagy in Gefitinib-sensitive or-resistant Human Non-small Cell Lung Cancer Cells (Gefitinib-민감성 또는 내성 비소세포폐암 세포에서 Licochalcone C에 의한 자가포식 유도)

  • Oh, Ha-Na;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1305-1313
    • /
    • 2019
  • Licochalcone (LC), isolated from the roots of Glycyrrhiza inflata has multiple pharmacological effects including anti-inflammatory and anti-tumor activities. To date, Licochalcone C (LCC) has induced apoptosis and inhibited cell proliferation in oral and bladder cancer cells, but lung cancer has not yet been studied. In addition, no study reported LCC-induced autophagy in cancer until now. The present study was designed to investigate the effect of LCC on gefitinib-sensitive and -resistant lung cancer cells and elucidate the mechanism of its action. The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay data showed that LCC significantly inhibited cell viability in non-small cell lung cancer (NSCLC) HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) cell lines. Interestingly, Annexin V/7-aminoactinomycin D double staining and cell cycle analysis showed an apoptosis rate within about 20% at the highest concentration of LCC. LCC induced G2/M arrest by reducing the expression of the cell cycle G2/M related proteins cyclin B1 and cdc2 in NSCLC cell lines. Treatment of LCC also induced autophagy by increasing the expression of the autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3) and the protein autophagy-related gene 5 involved in the autophagy process. In addition, LCC increased the production of reactive oxygen species (ROS), and the cell viability was partially restored by treatment with the ROS inhibitor N-acetyl-L-cysteine. In western blotting analysis, the expression of cdc2 was increased and LC3 was decreased by the simultaneous treatment of NAC and LCC. These results indicate that LCC may contribute to anti-tumor effects by inducing ROS-dependent G2/M arrest and autophagy in NSCLC. In conclusion, LCC treatment may be useful as a potential therapeutic agent against NSCLC.

The Study of Spontaneous Developmental Abnormalities and Toxicology of Benomyl and Its Metabolite on Salamander, Hynobius leechii.

  • Park, Yong-Uk
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2005.12a
    • /
    • pp.38-45
    • /
    • 2005
  • The egg bags of Korean salamander(Hynobius leechii) were collected from farmlands in Gyeongsangnam-do area. The assumed breeding time, numerical variation of embryos in each egg bag, mortality and the rates of abnormalities were investigated. The toxicity of benomyl, the metabolite carbendazim and BIC which were frequently spread in agricultural area and caused spontaneous embryonic malformation was investigated. The assumed breeding time between the end of February and the end of March has the difference about a month because of a habitat and it takes about 2 or 3 weeks from laying eggs to hatching. The length of each egg bag and the number of embryos were very varied in each area. It is due to geographical variation. Among egg bags in total study area, only 406 of egg bags(17.70% of total egg bags) developed all of embryos to normal larvae, and 78.49% of total embryos were normally developed. The patterns of spontaneous embryonic malformation were 26 species from A to Z and the abnormal patterns in individual were 8 species and above. the geographical differences about the abnormal pattern were identified and 11 habitats categorized 4 groups. The most frequent abnormality in Gyeongsangnam-do area is the dysplasia of external gill. The caudal dysplasia, abdominal blister and dysplasia of fin were also frequently observed. Individuals showing severe external defect were histologically studied and they showed retinal hypo-pigmentation, thyroid carcinoma, somatic muscular dysplasia, degeneration of cephalic neuron and various organ dysplasia. Benomyl and carbendazim were treated by 10pM$^{\sim}$10uM and BIC was treated by 1$^{\sim}$40ppm to know the effect of toxicity about toxic substance of salamander. After benomyl was treated, a survival rate was sharply dropped from 2 to 8 days. $LC_{100}$ identified in $1{\mu}M$, $LC_{50}$ identified between 100nM and $1{\mu}M$. $EC_{50}$ was assumed between 10nM and 100nM. The prevalent external malformation was abdomen swelled abnormally and histo-pathological effects were abdomen, neural tube and lens hernia. This suggests that benomyl is the toxicitic substance which inhibits the development of digestive system and nervous system. The result of treated carbendazim was similar to that of the treated benomyl. The survival rate is sharply dropped between 2 and 6 days. $LC_{100}$ was identified $1{\mu}M$ and $LC_{50}$ was identified between 10nM and 100nM. This shows that cabendazim has stronger lethal toxicity than benomyl. Ventral blister, eye dysplasia and cephalic dysplasia in the individual of external malformation mean that cabendazim affected nervous system much more than benomyl. Because the toxicity of BIC affected less in the beginning but affected more in the near hatching period, the period causing toxicity is somewhat different. $LC_{100}$ identified near 40ppm and $LC_{50}$ identified near 25ppm. The external defect shows mainly ventral blister and histo-pathological results show intestinal deformities. This result suggests the BIC inhibited strongly the development of digestive system. These abnormal developments may be caused by antimitotic action, inhibition of tubulin complex, destruction of microtubule, inhibitions of neurulation and closing of neural fold, and by the inhibition of movement of neural crest cells of benomyl. These abnormal developments may be caused by the rupture of epithelium, the loss of microtubule, the reduction of spindle size, the inhibition of spindle assembly formation, the destruction of spindle poles of carbendazim. These abnormal developments may be caused cytotoxicity by inhibition of the synthesis of a number of macromolecules and similar reaction the inhibition of benomyl.

  • PDF

Ferritin, an Iron Storage Protein, Associates with Kinesin 1 through the Cargo-binding Region of Kinesin Heavy Chains (KHCs) (철 저장 단백질 ferritin과 kinesin 1 결합 규명)

  • Jang, Won Hee;Jeong, Young Joo;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.698-704
    • /
    • 2016
  • The intracellular transport of organelles and protein complexes is mediated by kinesin superfamily proteins (KIFs). The first kinesin, kinesin 1, was identified as a molecular motor protein that moves various organelles and protein complexes along the microtubule rails in cells. Kinesin 1 is a tetramer of two heavy chains (KHCs, also called KIF5s) and two kinesin light chains (KLCs). KIF5s interact with many different proteins through their tail region, but their binding proteins have not yet been fully identified. To identify the interaction proteins for KIF5A, we performed yeast two-hybrid screening and found a specific interaction with ferritin heavy chain (Frt-h), which has a role in iron storage and detoxification. Frt-h bound to the amino acid residues between 800 and 940 of KIF5A and to other KIF5s in the yeast two-hybrid assay. The coiled-coil domain of Frt-h is essential for interaction with KIF5A. In addition, ferritin light chain (Frt-l) interacted with KIF5s in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KHC specifically co-immunoprecipitated Frt-h and Frt-l from mouse brain extracts. These results suggest the kinesin 1 motor protein may transport the ferritin complex in cells.

Developmental Abnormality in Agricultural Region and Toxicity of the Fungicide Benomyl on Korea salamander, Hynobius leechii (한국산 도롱뇽(Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성효과)

  • Choi, Yeoung-Ju;Yoon, Chun-Sik;Park, Joo-Hung;Jin, Jung-Hyo;Cheong, Seon-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.198-212
    • /
    • 2002
  • A numerical variation and abnormalities were studied on egg bags and embryos of Korean salamander, Hynobius leechii from agricultural habitat. The teratogenic and toxic effects of fungicide benomyl were also investigated with early embryos from non-agricultural habitat. We collected 144 egg bags from agricultural region, and 3418 of early embryos were contained. The lengths of egg bags were varied from 10 to 23 cm and the most frequent length was 19 cm. The number of embryos was varied from 7 to 43, and the most frequent range was 22 to 26. Spontaneous abnormalities were occurred in 406 embryos among 116 egg bags, and 24 kinds of external abnormalities were found. Individuals showing severe external defect were histologically studied and they showed optic dyspalsia, thyroid carcinoma, somatic muscular dysplasia, partial biaxial structure, decrease of red blood cells in the heart, cephalic degeneration and intestinal dysplasia. 385 embryos from non-agricultural region were exposed to 200 nM${\sim}$ 1 ${\mu}$M of benomyl at blastula or gastrula for 12 days. All embryo were dead in the concentration of 1 ${\mu}$M (LD$_{100}$) and 75% of embryos were dead in 800nM of benomyl. Speciflc effect due to benomyl was acrania or cephalic dysplasia and this restult suggests that the benomyl inhibit stongly to the development of neural tissue. These abnormal developments may be caused by antimitotic action, inhibition of tubulin complex, destruction of microtubule, inhibitions of neurulation and closing of neural fold, and by the inhibition of the movement of neural crest cells.

Evaluation of the Potential of Cellobiose as a Material for Whitening Cosmetics based on Autophagy and Melanin Production Efficacy in Melanocytes (셀로비오스의 미백화장품 소재 가능성 평가를 위한 멜라닌 세포에서 자가포식 및 멜라닌 생성 효능 연구)

  • Byungsun, Cha;Seok ju, Lee;Sofia, Brito;So Young, Jung;So Min, Lee;Lei, Lei;Sang Hun, Lee;Zubaidah, Al-Khafaji;Bum-Ho, Bin;Byeong-Mun, Kwak;Hyojin, Heo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.4
    • /
    • pp.365-372
    • /
    • 2022
  • Cellobiose is a dissacharide constituted by two glucose units joined by a β-('1,4') glycosidic bond that is produced by the decomposition of cellulose. This product exists naturally in plants and has been utilized in different industries as a food sweetener, and as a cosmetic and pharmaceutical material. In this study, the potential of cellobiose as a whitening cosmetic product was evaluated by analyzing autophagy induction and the inhibition of melanin production. A cytotoxicity test conducted in the human melanin-producing cell line MNT-1 with increasing concentrations of cellobiose revealed that this compound did not cause cytotoxicity at 20 mg/mL or less. Based on this, autophagy was firstly evaluated by immunostaining with the autophagy marker microtubule-associated protein 1 light chain 3 (LC3) after treatment with 20 mg/mL of cellobiose. The subsequent confocal microscopy analysis revealed an increase in LC3 puncta, indicating induction of autophagy. In addition, autophagy was further confirmed by western blot analysis, which demonstrated that cellobiose converted LC3-I to LC3- ∏ in a concentration- and time-dependent manners. An analysis of melanin contents after cellobiose treatment at a concentration of 20 mg/mL during 7 days revealed that melanin production was reduced by more than 50%. Additionally, the expression levels of melanogenesis-related proteins TYR and TYRP1 were markedly decreased after cellobiose treatment. Based on these studies, a cosmetic cream formulation containing cellobiose was prepared and the change in formulation was tested for 4 weeks, and it was confirmed that the appearance changed to liquid form at high temperature, but the pH did not change. In conclusion, the present research demonstrated that cellobiose activates autophagy and inhibits melanin production, and showed the potential of this product as a material for whitening cosmetics.

Glutamate-rich 4 Binds to Kinesin Superfamily Protein 5A (Glutamate-rich 4와 kinesin superfamily protein 5A와의 결합)

  • Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Sang Jin Kim;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Intracellular cargo transport is mediated by molecular motor proteins, such as kinesin and cytoplasmic dynein. Kinesins make up a large subfamily of molecular motors. Kinesin-1 is a plus-end-directed molecular motor protein that moves various cargoes, such as organelles, protein complexes, and mRNAs, along a microtubule track. It consists of the kinesin superfamily protein (KIF) 5A, 5B, and 5C (also called kinesin heavy chains) and kinesin light chains (KLCs). Kinesin-1 interacts with many different binding proteins through its carboxyl (C)-terminal region of KIF5s and KLCs, but their binding proteins have not yet been fully identified. In this study, a yeast two-hybrid assay was used to identify the proteins that interact with the KIF5A specific C-terminal region. The assay revealed an interaction between KIF5A and glutamate-rich 4 (ERICH4). ERICH4 bound to the KIF5A specific the C-terminal region but did not interact with the C-terminal region of KIF5B or KIF3A (a motor protein of kinesin-2). In addition, KIF5A did not interact with another isoform, ERICH1. Glutathione S-transferase (GST) pull-downs showed that KIF5A interacts with GST-ERICH4 and GST-ERICH4-amino (N)-terminal but not with GST-ERICH4-C or GST alone. When co-expressed in HEK-293T cells, ERICH4 co-localized with KIF5A and co-immunoprecipitated with KIF5A and KLC but not KIF3B. Together, our findings suggest that ERICH4 is capable of binding to KIF5A and that it may serve as an adaptor protein that links kinesin-1 with cargo.

Serum Carcinoembryonic Antigen Levels before Initial Treatment are Associated with EGFR Mutations and EML4-ALK Fusion Gene in Lung Adenocarcinoma Patients

  • Wang, Wen-Tao;Li, Yin;Ma, Jie;Chen, Xiao-Bing;Qin, Jian-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.3927-3932
    • /
    • 2014
  • Background: Epidermal growth factor receptor (EGFR) mutations and echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) define specific molecular subsets of lung adenocarcinomas with distinct clinical features. Our purpose was to analyze clinical features and prognostic value of EGFR gene mutations and the EML4-ALK fusion gene in lung adenocarcinoma. Patients and Methods: EGFR gene mutations and the EML4-ALK fusion gene were detected in 92 lung adenocarcinoma patients in China. Tumor marker levels before first treatment were measured by electrochemiluminescence immunoassay. Results: EGFR mutations were found in 40.2% (37/92) of lung adenocarcinoma patients, being identified at high frequencies in never-smokers (48.3% vs. 26.5% in smokers; P=0.040) and in patients with abnormal serum carcinoembryonic antigen (CEA) levels before the initial treatment (58.3% vs. 28.6%, P=0.004). Multivariate analysis revealed that a higher serum CEA level before the initial treatment was independently associated with EGFR gene mutations (95%CI: 1.476~11.343, P=0.007). We also identified 8 patients who harbored the EML4-ALK fusion gene (8.7%, 8/92). In concordance with previous reports, younger age was a clinical feature for these (P=0.008). Seven of the positive cases were never smokers, and no coexistence with EGFR mutation was discovered. In addition, the frequency of the EML4-ALK fusion gene among patients with a serum CEA concentration below 5ng/ml seemed to be higher than patients with a concentration over 5ng/ml (P=0.021). No significant difference was observed for time to progression and overall survival between EML4-ALK-positive group and EML4-ALK-negative group or between patients with and without an EGFR mutation. Conclusions: The serum CEA level before the initial treatment may be helpful in screening population for EGFR mutations or EML4-ALK fusion gene presence in lung adenocarcinoma patients.