• Title/Summary/Keyword: Microtremor

Search Result 36, Processing Time 0.035 seconds

Estimation of Ground Response Characteristics by Microtremor (미세진동 측정을 통한 지반응답특성 평가)

  • Joh sung-ho;Lee il-wha;Ko hak-song
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.718-721
    • /
    • 2005
  • The purpose of the study is to evaluate the usage of microtremor in estimation of subsurface structure and ground response to ground motion. Ground motion amplification based on site condition of an area is an important parameter for dynamic design. Microtremor cover the characteristics in a low frequency range, while forced vibrations cover them in a high-frequency range. Microtremor consider ground characteristics and offer transfer function in area. To determine the dominant frequency, the passive microtremor measurement is performed and to determine the transfer function of test site, active microtremor measurement is performed. Microtremor measurement in the site is compared with theoretical transfer function calculated from the known structures.

  • PDF

Microtremor and Underground Structure (상시미동과 지하구조)

  • 김성균
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.109-120
    • /
    • 1991
  • Applications of microtremor to geological engineering are widely reviewed and observed microtremors are processed to show evidences of close relationship between the predominant periods of microtremor and underground structure. The ground vibrates continuously at all times and the elastic vibration is called microtremor (0.5-20Hz) or microseisms (0.01-0.1Hz) according to their frequency range. The vibration is believed to have propagative nature like those of the dispersive surface waves or multireflected shear waves. Microtremors were recorded at selected thress places of which subsoil structures are well distinguished in the Kyongsang Sedimentary Basin. It is found that the underground structures estimated from microtremor analysis coincide well with the known structures. The microtremor analysis of the long period range can be an inexpensive and effective tool in geological engineering for the evaluation of the underground structure, site-specific reponse spectrum, and seismic microzonations.

  • PDF

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.

Case study on the effects of retrofitting on changing structural dynamic characteristics by microtremor measurements and finite element analysis

  • Hadianfard, Mohammad Ali;Rabiee, Ramin;Sarshad, Azad
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.965-977
    • /
    • 2015
  • Determination of dynamic parameters of a structure such as predominant frequency and damping ratio is one of the most important subjects in dynamics of structures. Different methods are used to determine predominant frequency. These methods are different in the cost, implement accessibility, accuracy, speed, applicability in different conditions, simplicity of calculations and required data accessibility. Calculation of damping ratio by using common experimental procedures is very difficult and costly, then it is assumed as a constant value in most calculations. Microtremor measurements and using spectral ratio method to determine the predominant frequency and damping ratio of structure is of interest in recent years. In this paper, as a case study, the effects of retrofitting on structural dynamic parameters of two four-story buildings by using microtremor measurements and also finite element analysis, is investigated. The results of this study show that microtremor measurements can be utilized to assess the improvement of dynamic behavior of the retrofitted structure and the effectiveness of the method of retrofitting.

Estimation of Natural Period by Microtremor Measurement in Shearwall Apartments. (상시미동 측정을 통한 벽식아파트 건물의 고유주기)

  • 강호근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.375-382
    • /
    • 1999
  • The fundamental vibration period of a shearwall apartments cannot estimate accurately by means of empirical formulas specified in present codes, The objective of this paper is to estimate the period of a shearwall apartments by microtremor measurement. A micretremor is the continuous small oscillation of the ground cause by traffic and operation machinery. Microtremors are extensively studied primarily in Japan to estimate conveniently subsurface structures of soil deposits and building vibrations. It is obtained the results that the fundamental periods estimated by microtremor measurement are shorter than those values by dynamic analysis of building.

  • PDF

Shallow Shear-wave Velocities Using the Microtremor Survey Method (상시미동 측정을 통한 천부 횡파속도 연구)

  • Hwang, Yoon-Gu;Kim, Ki-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.381-392
    • /
    • 2006
  • The passive surface wave survey using microtremor is conducted in areas of crystalline rock basements to obtain average shear-wave velocity structures to 30 m deep (Vs30), on which the earthquake-resistant design standard is based. Test data were recorded at two sites with triangular and L-shaped arrays for 4 seconds with an sampling interval of 2 ms. The microtremor recorded at a site were analysed using the spatial autocorrelation method to obtain phase-velocity spectra and effects of major factors such as size and shape of away and number of record and receiver were examined. At the other site, shear-wave velocities were derived from VSP and microtremor data separately. The results from these two methods agree to each other reasonably well, indicating that the microtremor method can be an effective geophysical tool to measure Vs30.

The Microtremor HVSRs in the SW Korean Peninsula I: Characteristics of the HVSR Peak Frequency and Amplification (한반도 남서부의 상시미동 HVSR 연구 I: 정점주파수와 증폭효과의 특성)

  • Jung, Hee-Ok;Kim, Hyoung-Jun;Jo, Bong-Gon;Park, Nam-Ryul
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.541-554
    • /
    • 2010
  • Fifteen min-microtremor data sets were collected at 136 sites from a coastal area of Kunsan and 117 sites from an inland area of Jeonju located in SW Korea, and were analyzed for the HVSR (Horizontal to Vertical Spectral Ratio) of the sites. The microtremor spectra of the coastal area have stronger energy in the lower frequency range from 1-6 Hz than those of the coastal area. This result can be attributed to the effect of the waves and tides in the Keum river and the Yellow sea. Twenty four hours of measurement of the microtremor indicated that the microtremor spectrum correlates with the human activities, but the microtremor HVSR peak was observed consistently at the characteristic frequency for the site. The HVSR peaks were grouped into 4 types -"single peak", "double peak", "broad peak" or "no peak"- based on their shapes. More than 90% of the data sets exhibit peak frequencies ($F_0$) which can be easily identified. The distribution of $F_0$ reveals a close relationship with the topography and local geology of the areas, exhibiting high F0s in the hillside areas and low $F_0s$ in the reclaimed land area. While the amplitudes of microtremor HVSR peak frequencies are less than 4 in the downstream of the inland area, those of the recently reclaimed land in the coastal area are extremely high (more than 10). The results of this study indicate that detailed HVSR studies are essential for the earthquake hazard reduction of reclaimed lands.

Estimation of Subsurface Structure and Ground Response by Microtremor (상시미동에 의한 지하구조와 지반응답의 추정)

  • Hwang, Min-Woo;Kim, Sung-Kyun
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.380-392
    • /
    • 2002
  • The purpose of the present study is to evaluate the usage of microtremor in estimation of subsurface structure and ground response to strong ground motion. To accomplish the purpose, the current status of microtremor study are reviewed and microtremors recorded at several stations are analysed. First of all, the stability of microtremor is examined through the analysis of microtremors recorded for 80 seconds per hour during the time from 10 p.m. to 6 a.m. for eight hours at night time. It is found that the shape of microtremor spectra of low frequency below 10Hz is approximately invariable with time and the spectra contain informations about subsurface structure. The subsurface structures estimated from the predominant frequency determined from the recorded microtremors are compared with the known ones from geophysical surveys at several stations in Kyungju. The comparison of structures shows rough agreements at most stations. Horizontal to vertical spectral ratio(HVSR) technique for microtremor has been proposed as an indirect method to determine ground response to strong ground motion. The HVSR for microtremors recorded in Kyungju is calculated and compared with theoretical transfer function calculated from the known structures. The comparison shows rough coincidence of the peak frequency of spectra between them.

Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements (Microtremor 배열 (SPAC) 측정을 이용한 제4기 실트층의 S파 속도구조 추정)

  • Roberts James;Asten Michael
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • We have used the microtremor method, with arrays of up to 96 m diameter, to carry out non-invasive estimation of shear-wave velocity profiles to a depth of 30 to 50 m in unconsolidated Quaternary Yarra Delta sediments. Two silt units (Coode Island Silt, and Fishermans Bend Silt) dominate our interpretation; the method yields shear velocities for these units with precision of $5\%$, and differentiates between the former, softer unit ($V_s$=130 m/sec) and the latter, firmer unit ($V_s$=235 m/sec). Below these silts, the method resolves a firm unit correlating with known gravels ($V_s$ 500 to 650 m/sec). Using surface traverses with the single-station H/V spectral ratio method, we show that the variation in thickness of the softer silt can be mapped rapidly but only qualitatively. The complexity of the geological section requires that array methods be used when quantitative shear-wave velocity profiles are desired.

Thickness Analysis of the Alluvium and Yeonil Group in Pohang Area through the Microtremor HVSR Techniques (상시미동 HVSR 기법 적용을 통한 포항지역의 충적층 및 연일층군의 층후 분석)

  • Kim, Jeonghyun;Ki, Jungseok;No, Younghwa
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.211-222
    • /
    • 2021
  • The magnitude 5.4 earthquake occurred in 2017 near 7.5 km north of Buk-gu, Pohang. In order to find out the characteristics of microtremor in Buk-gu, Pohang, Gyeongsangbuk-do, where earthquake damage occurred significantly, a total of 39 points were acquired to analyze the horizontal to vertical spectral ratio (HVSR). Microtremor vary from region to region, so the resonant frequency of the region is obtained by examining the microtremor. For Thickness analysis, we analyze the structure and properties of shear wave velocity (Vs) up to the underlying rock to compare resonance frequencies to match the horizontal to vertical spectral ratio (HVSR) analysis technique against nearby boring data. Using F0 = Vs/4H with a resonance frequency of alluvium is 1.3 ± 0.07 Hz and a resonance frequency of Yeonil group is 0.69 ± 0.22 Hz, the alluvium thickness was found to be 26~30 m and the Yeonil group thickness was 170~250 m.