• Title/Summary/Keyword: Microthrix parvicella

Search Result 5, Processing Time 0.021 seconds

Control of Bulking and Foaming Caused by Microthrix parvicella (Microthrix parvicella에 의한 슬러지 벌킹과 거품문제 해결)

  • Kang, Min-Gi;Kim, Young-Chul;Bang, Seong-Ho;Lee, Jin-Woo;Ha, Jun-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.376-383
    • /
    • 2006
  • This study was undertaken to control sludge bulking and foaming problems at the biological nutrient removal processes. A sewage treatment plant(STP) had a severe sludge settling problem usually over 90% in 30 min settled sludge volume and 300 mL/g in SVI and also thick and heavy brown foam in the secondary clarifiers. Identification study shows that causative filament was Microthrix parvicella which has not been previously reported in Korea. According to the inspection of processes and other related parameters, excessive growth of this particular filament was associated with high SRT caused by lack of proper capacity in sludge treatment line. After providing an extension of the sludge treatment capability, the plant can decrease SRT by wasting more sludge from the processes and also decreasing SS concentration in recycled stream. Subsequently we were able to control growth of M. parvicella. The SVI value was reduced to half of those observed during the severe bulking, but also sludge blanket and its concentration in the clarifier became compact and dense. However, decrease in population of M. parvicella caused increase of total phosphorus concentration in the effluent.

Morphological Parameters of the Sludge Flocs in a Long Rectangular Secondary Settling Tank (장방형 침전지에서 길이에 따른 슬러지 floc의 형태에 관한 연구)

  • Kim, Youngchul;Lee, Jin-Woo;Kang, Min-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.468-474
    • /
    • 2006
  • In the secondary settling tanks, three different types of settling phenomena occurs; i.e., zone settling for sludge thickening in the bottom part of settling tank, and discrete and flocculent settling for clarification in the upper part. In this paper, morphological parameters of the floc in sludge blanket layers along the length of a long rectangular tank were investigated. The plant used for this study had a serious bulking problem caused by Microthrix parvicella. Floc size decreased as the surface area of settling tank increases, which indicates that in the secondary settling tank where zone settling believed to be predominant, free or flocculent type of settling contributes to floc size distributions. Large floc particles deposit in the front zone of settling tank, but small and loose flocs mostly in the zone near its outlet. On the other hand, filament length contained in one gram of sludge blanket solid increases along the flow direction. Large flocs with less filaments settle faster, but small flocs having more filaments result in poor settling. These results support function of microorganism selection occurring in secondary settling tank. In addition, designing a long rectangluar settling tank with double hoppers might be one of the ways of bulking control, but this idea has to be verified with a further study.

Characteristics and Control of Microthrix Parvicella Bulking in Biological Nutrient Removal Plant (생물학적 영양소제거공정에서 Microthrix Parvicella에 의한 Bulking 특성 및 제어)

  • Lee, H.;Ahn, K.
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1101-1106
    • /
    • 2006
  • Many BNR (Biological Nutrient Removal) plants have experienced a bulking problem, mainly due to the growth of filamentous organisms, particularly during the winter months. This study investigated the problem of bulking due to the growth of M. parvicella both at a full-scale municipal wastewater treatment plant and a pilot scale plant located in the C city. The full-scale facility was operated at a flow rate of $51,000m^3/d$, an F/M (Food-to-Microorganism) ratio of 0.12 kgBOD/kgMLVSS/d and an SRT (Solids Retention Time) higher than 25 days, respectively. This plant experienced bulking and foaming problems at low temperatures below $15^{\circ}C$ since it was retrofitted with the BNR system in 2003. The pilot plant employed had an identical process configuration as the full scale one and used the same wastewater source. It was operated at a flow rate of $3.8m^3/d$, temperatures between 10 to $25^{\circ}C$ and SRTs between 10 and 25 days. At full scale, the M. parvicella growth and SVI (Sludge Volume Index) patterns were studied in conjunction with temperature variations. At pilot scale, DO and SRT variations were also explored, in addition to the filamentous bacteria growth and SVI patterns. During the full-scale investigation, over a 3 year period, it was noted that the SVI was maintained within acceptable operational values (i.e. under 160) during the summer months. Moreover settling in the secondary clarifiers was good and was not affected by the presence of M. parvicella. In contrast, at low mean temperatures during winter, the SVI increased to over 300. Overall, as the temperature decreased, the predominance of M. parvicella became apparent. According to this study, M. parvicella growth could be controlled and SVI could drop under 160 by a change in operational conditions which involved an increase in DO concentration between 2 and 4 mg/L and a decrease in SRT to less than 20 days.

Types and Abundance of Filamentous Bacteria, Protozoa and Metazoa in Activated Sludge (활성오니에서 발견된 사상세균, 원생동물 및 후생동물의 유형과 우점도 분석)

  • 정재춘;김남천
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.365-371
    • /
    • 1995
  • Filamentous bacteria and other large microorganisms, which are useful indicators of bulking and poeration, were identified by microscopic observation. Activated sludge samples were taken from the aeration basin of 5 municipal wasterwater plants and 6 industrial ones. Among the filamentous bacteria founds, Microthrix parvicella was most frequently present, followed by type 0041, type 1701 and Nocardia. This frequency of occurrence was similar to those reorted in USA and the Neterland. The morphology of filamentous bacteria observed were generally identical with those previously reported. except type 1701 which had slender filament diameter. Among protozoa, Vorticella was most frequently present, followed by Aspidisca, Opercularia and Difflugia. Philodina was the only metazoa observed. Both filamentous bacteria and protozoa would be useful indicator organisms. The potential for these organisms as indicators were discussed.

  • PDF

Genomic Analysis of a Freshwater Actinobacterium, "Candidatus Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang

  • Kim, Suhyun;Kang, Ilnam;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.825-833
    • /
    • 2017
  • Strain IMCC26207 was isolated from the surface layer of Lake Soyang in Korea by the dilutionto-extinction culturing method, using a liquid medium prepared with filtered and autoclaved lake water. The strain could neither be maintained in a synthetic medium other than natural freshwater medium nor grown on solid agar plates. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain IMCC26207 formed a distinct lineage in the order Acidimicrobiales of the phylum Actinobacteria. The closest relative among the previously identified bacterial taxa was "Candidatus Microthrix parvicella" with 16S rRNA gene sequence similarity of 91.7%. Here, the draft genome sequence of strain IMCC26207, a freshwater actinobacterium, is reported with the description of the genome properties and annotation summary. The draft genome consisted of 10 contigs with a total size of 3,316,799 bp and an average G+C content of 57.3%. The IMCC26207 genome was predicted to contain 2,975 protein-coding genes and 51 non-coding RNA genes, including 45 tRNA genes. Approximately 76.8% of the protein coding genes could be assigned with a specific function. Annotation of the IMCC26207 genome showed several traits of adaptation to living in oligotrophic freshwater environments, such as phosphorus-limited condition. Comparative genomic analysis revealed that the genome of strain IMCC26207 was distinct from that of "Candidatus Microthrix" strains; therefore, we propose the name "Candidatus Limnosphaera aquatica" for this bacterium.