• Title/Summary/Keyword: Microstructure properties

Search Result 4,061, Processing Time 0.035 seconds

Forming Process and Mechanical Properties of Grain Controlled Rheology Material (결정립 제어 레오로지 소재의 성형공정과 기계적 성질)

  • Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.463-466
    • /
    • 2005
  • The microstructure and mechanical properties of rheocast A356 aluminum alloy by electromagnetic stirring are studied. In the electromagnetic stirring, main parameters are stirring current and stirring time. Stirring current is ranged from 0 A to 60 A, and stirring time is 20, 40, and 60 sec. In the rheocasting, injection velocity and applied pressure are changed. In this paper, the effect of stirring current and stirring time on the morphology and mechanical properties are investigated and analyzed.

  • PDF

Electrical and Microstructure Properties on Sintering Conditions of ZnO Varistor (소결 조건에 따른 ZnO 바리스터의 미세구조 및 전기적 특성)

  • Yoon, Jung-Rag;Chung, Tae-Serk;Lee, Heun-Young;Lee, Serk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.662-666
    • /
    • 2006
  • Microstructure and electrical properties of ZnO varistors as a function of sintering temperature and times were investigated. Sintering temperature and times greatly affected electrical properties and Bi-rich liquid phase of the microstructure. The varistor which were sintered at $1125^{\circ}C\sim1150^{\circ}C$, for 2 hr exhibited the varistor voltage$(V_c)$, nonlinear coefficient $(V_{10mA}/V_{1mA})$, leakage current$(I_L)$ dielectric constant and dissipation factor as $225\sim250V/mm,\;0.89\sim0.92,\;0.8\sim1.1{\mu}A,\;720\sim740\;and\;1.8\sim2.0%$, respectively.

Effects of Section Size and Melt Holding on the Mechanical Properties and Microstructure of High Silicon Ductile Cast Iron (고규소 구상흑연주철의 기계적 성질 및 미세조직에 미치는 단면 크기 및 용탕 유지의 영향)

  • Lee, Suk-Ju;Park, Ki-Ho;Lee, Sang-Hee;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.81-85
    • /
    • 2012
  • The effects of section size and melt holding time on the mechanical properties and microstructure of high silicon ductile cast iron were investigated. The strength, elongation and hardness of the test specimen with smaller cross-section were higher than those with larger one. The nodule count and volume fraction of pearlite of the former were higher than those of the latter. The mechanical properties decreased with increased melt holding time before pouring. Nodularity and nodule count decreased and the volume fraction of pearlite rather slightly increased with it.

Mechanical Properties and Microstructure of Nano Grain Nickel Alloy Deposit

  • Seo, Moo Hong;Kim, Jung Su;Kim, Seung Ho;Wyi, Jung Il;Hwang, Woon Suk;Jang, Si Sung;Jung, Hyun Kyu;Chun, Byung Sun
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.197-201
    • /
    • 2003
  • In this study, Ni-P layers were electroplated on the surface of stainless steel in order to investigate the effects of an additive and agitation on their mechanical properties and microstructure. The concentration of the additive in the plating solution increased, the pores formed in the layer decreased, while the residual stress developed in the layers during electroplating increased. Agitation of the solution during electroplating was observed to force to increase local pores in the layer, which lowers its tensile properties. Grain growth was suppressed due to very fine $Ni_3P$ precipitates formed at its grain boundaries during heat treatment at $343^{\circ}C$ for 1 hr in air.

The Effect of Pressure on Liquid Segregation in Direct Rheo-Forging Process of Aluminum Alloys (알루미늄 소재의 레오로지 직접단조공정에서 가압력이 액상 편석에 미치는 영향)

  • Oh, S.W.;Bae, J.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.178-186
    • /
    • 2007
  • Rheo-forging process of aluminum alloy is suitable for large parts of net shape without defects and excellent mechanical properties in comparison with conventional die casting and forging process. To control the microstructure of the product with high mechanical properties in rheo-forming, solid fraction is required to prevent porosity and liquid segregation. Therefore, in rheo-forging process, die shape, pressure type and solid fraction are very important parameters. The defects such as porosity, liquid segregation and unfitting phenomena occur during rheo-forging process. To prevent these defects, mechanical properties and microstructure analysis of samples versus the change of pressure are carried out and the problem and its solutions are proposed. Also, the mechanical properties versus various pressures were compared with and without heat treatment. The alloys used for rheo-forming are A356 and 2024 aluminum alloy. The rheology material is fabricated by electromagnetic process with controlling current and stirring time.

Microstructure and Magnetic Properties of $Nd_2Fe_{14}B/{\alpha}-Fe$ Nanocomposite Prepared by HDDR Combined with Mechanical Milling

  • Hu, Lianxi;Wang, Erde;Guo, Bin;Shi, Gang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1286-1287
    • /
    • 2006
  • [ $Nd_2Fe_{14}B/{\alpha}-Fe$ ] nanocomposite powders with a nominal composition of $Nd_{12}Fe_{82}B_6$ were prepared by HDDR combined with mechanical milling. The microstructure was studied by Mossbauer spectrometry and TEM. The magnetic properties were investigated by VSM using bonded magnet samples. The results showed that the annealing temperature had significant influence on both the recombination kinetics and the grain size of the $Nd_2Fe_{14}B$ and ${\alpha}-Fe$ phases, and the bonded magnets presented the best magnetic properties when the nanocomposite powders were prepared by annealing at $760^{\circ}C$ for 30 min.

  • PDF

Mechanical properties and microstructure of innovative bio-mortar containing different aggregates

  • Abo-El-Eanein, S.A.;Abdel-Gawwad, H.A.;El-Mesallamy, Amani M.D.;El-Belbasi, Hussein I.;Ayoub, Hebah. G.
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.291-296
    • /
    • 2018
  • The aim of this work is to study the effect of aggregate type on the physico-mechanical properties and microstructure of bio-mortar (BM). Three different aggregates such as sand, dolomite and basalt were used. BM was prepared by mixing aggregates with bacterial cells (Sporosarcina Pasteurii) and one equimolar (1 M) of $urea/CaCl_2.2H_2O$. The results proved that the chemical composition and physical properties of aggregates play an important role in the microbial precipitation rate as well as size, morphology and crystallinity of the precipitated calcite, which strongly reflects on the properties of the prepared BM. The BM containing dolomite gave the highest compressive strength and lowest water absorption.

Magnetic Properties and Microstructure of Co Thin Films by RF-diode Sputtering Method (RF-diode Sputtering법으로 제작한 Co박막의 자기특성과 미세구조)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.159-165
    • /
    • 2018
  • In order to increase the efficiency of the sputtering method widely used in thin film fabrication, a dc sputtering apparatus which supplies both high frequency and magnetic field from the outside was fabricated, and cobalt thin film was fabricated using this apparatus. The apparatus can independently control the applied voltage, the target-substrate distance, and the target current, which are important parameters in the sputtering method, so that a stable glow discharge is obtained even at a low gas pressure of $10^{-3}$ Torr. The fabrication conditions using the sputtering method were mainly performed in $Ar+O_2$ mixed gas containing about 0.6 % oxygen gas under various Ar gas pressures of 1 to 30 mTorr. The microstructure of Co thin films deposited using this apparatus was examined by electron diffraction pattern and X-ray techniques. The magnetic properties were investigated by measuring the magnetization curves. The microstructure and magnetic properties of Co thin films depend on the discharge gas pressure. The thin film fabricated at high gas pressure showed a columnar structure containing a large amount of the third phase in the boundary region and the thin film formed at low gas pressure showed little or no columnar structure. The coercivity in the plane was slightly larger than that in the latter case.

Microstructure and Hardness of Ti-X%Cu(X=2,5,10) Alloys for Dental Castings (치과주조용 Ti-X%Cu(X=2,5,10)합금의 미세조직 및 경도)

  • Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.31 no.3
    • /
    • pp.9-14
    • /
    • 2009
  • This study evaluated the mechanical properties of Ti-Cu alloys with the hope of developing an alloy for dental casting with better mechanical properties than unalloyed titanium. Ti-Cu alloys with four concentrations of Cu(2,5,10wt%) were made in an argon-arc melting furnace. The microstructure and micro-Vickers hardness were determined. X-ray diffraction pattern test was performed on the polished specimens. The microstructure of 2%Cu and 5%Cu alloys are shown acicular ${\alpha}Ti$ phase formed on the surfaces of previously formed $\beta$grains. The 10%Cu alloys has essentially a eutectoid structure; this structure includes lamella of ${\alpha}Ti$ and $Ti_2Cu$ phase that transformed from ${\alpha}Ti$ at the eutectoid temperature. The micro-Vickers hardness of CP Ti specimens was significantly(p<0.05) lower than that of any of the other alloys. Among the Ti-Cu alloys, the 10%Cu alloys exhibited a significantly(p<0.05) higher hardness value. but lower than that of Ti-6%Al-4%V alloy. From these results, it was concluded that new alloys for dental castings should be designed as Ti-Cu based alloys if other properties necessary for dental castings were obtained.

  • PDF